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Preface 

This book, which is published in two volumes, aims at introducing the reader 
to the essential steps involved in the numerical simulation of fluid flows by 
providing a guide from the initial step of the selection of a mathematical model 
to practical methods for their numerical discretization and resolution. 

The first volume, divided into four parts, is devoted to the fundamentals of 
numerical discretization techniques and attempts a systematic presentation of 
the successive steps involved in the definition and development of a numerical 
simulation. The second, on the other hand, presents the applications of 
numerical methods and algorithms to selected flow models, from the full 
potential flow model to the systems of Euler and Navier-Stokes equations. 

Part I ,  covering Chapters 1 to 3, introduces the mathematical models 
corresponding to various levels of approximation of a flow system. We hope 
hereby to draw, if necessary, the reader’s attention to the range of validity and 
limitations of the different available flow models so that the user will be in a 
position to make a choicc in full awareness of its implications. Part I I  is 
devoted to a presentation of the essentials of the most frequently applied 
discretization methods for differential equations, the finite difference (Chapter 
4), finite element (Chapter 5 )  and finite volume methods (Chapter 6). Part III 
introduces the next step in the development of an algorithm, namely the 
methods for the analysis of the stability, convergence and accuracy properties 
of a selected discretization. This is covered in Chapters 7 and 10, dealing, 
respectively, with basic definitions, the Von Neumann method, the method of 
the equivalent differential equation and the matrix method. Finally, Part IV 
covers the resolution methods for discretized equations. More particularly, 
integration methods which can be applied to systems of ordinary differential 
equations (in time) are discussed in Chapter 11 and iterative methods for the 
resolution of algebraic systems are discussed in Chapter 12. 

No attempt has been made towards an exhaustive presentation of the 
material covered and several important topics are not treated in the text for 
objective as well as subjective reasons. To explain a few of them, spectral 
discretization methods applied to flow problems are an important technique, 
which is treated in existing textbooks, but also we have no practical experience 
with the method. Stability analysis methods, such as the energy method, 
require a mathematical background which is not often found in the engineer- 
ing community, and it was not felt appropriate to introduce this subject in a 

xv 
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text which is addressed mainly to engineers and physicists with an interest in 
flow problems. The computationa1 techniques for boundary layers are largely 
covered in recent textbooks, and we thought that there was not much to add to 
the existing, well-documented material. 

This text is directed at students at the graduate level as well as at scientists 
and engineers already engaged, or starting to be engaged, in computational 
fluid dynamics. With regard to the material for a graduate course, we have 
aimed at allowing a double selection. For an introductory course, one can 
consider an ‘horizontal’ reading, by selecting subsections of different chapters 
in order to cover a wider range of topics. An alternative ‘vertical’ reading 
would select fewer chapters, with a more complete treatment of the selected 
topics. 

Parts of this book have been written while holding the NAVAIR Research 
Chair at the Naval Postgraduate School in Monterey, during the academic 
year 1983-4, for which I am particularly indebted to Ray Shreeve, Professor 
at the Areonautical Department and Director of the Turbopropulsion Labora- 
tory. The pleasant and encouraging atmosphere during this period and during 
subsequent summer stays at NPS, where some additional writing could partly 
be done, is, for a large part, the basis of having brought this task to an end. 

Some sections on Euler equations were written during a summer stay at 
ICASE, NASA Langley and I would like to acknowledge particularly Dr 
Milton Rose, former Director of ICASE, for his hospitality and the stimula- 
ting atmosphere. I have also had the privilege of benefiting from results of 
computations performed, at my request, on different test cases by several 
groups, and I would like to thank D. Caughey at  Cornell University: T. Holst 
at NASA Ames, A. Jameson at Princeton University, M. Salas at NASA 
Langley, and J .  South and C. Gumbert also at NASA Langley, for their 
willingness and effort. 

Finally, I would like to thank my colleagues S. Wajc and G. Warzee as well 
as present and former coworkers H. Deconinck, C. Lacor and J .  Peuteman for 
various suggestions, comments and contributions. I have also the pleasure to 
thank my secretaries L. Vandenbossche and J. D’haes for the patience and the 
effort of typing a lengthy manuscript. 

Ch. HiRSCH 
BRUSSELS, JANUARY 1987 
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Chapter I 

The Basic Equations 
Dynamics 

of Fluid 

The laws of fluid dynamics are well established and can be formulated in many 
equivalent ways. For instance, they can be deduced from the observation that 

the behaviour of a physical system is completely determined by conservation 
laws. This corresponds to the statement that during the evolution of a fluid 
a certain number of properties, such as mass, generalized momentum and 
energy, are ‘conserved’. The significance of this expression needs, of course, to 
be explained. 

The awareness of this fact has been one of the greatest achievements of 
modern science, due to the high level of generality and degree of abstraction 
involved. Indeed, no matter how complicated the detailed evolution of a 
system might be, not only are the basic properties of mass, momentum and 
energy conserved during the whole process at all times (in the sense to be 
defined later) but these three conditions completely determine the behaviour of 
the system without any additional dynamical law. This is a very remarkable 
property indeed. The only additional information concerns the specification of 
the nature of the fluid (for example, incompressible fluid, perfect gas, viscous 
fluid, viscoelastic material, etc.). Of course, an important level of knowledge 
implied in these statements has to be defined before the mathematical 
expression of these laws can be written and used to predict and describe the 
system’s behaviour. 

A fluid flow is considered as known if, at any instant in time, the velocity 
field and a minimum number of static properties are known at any point. The 
number of static properties to be known is dependent on the nature of the 
fluid. This number will be equal to one for an incompressible fluid (the 
pressure) and two (for example, pressure and density) for a perfect gas or any 
real compressible fluid in thermodynamic equilibrium. 

We will assume that a separate analysis has provided the necessary 
knowledge enabling the nature of the fluid to be defined. This is obtained from 
the study of the behaviour of the various types of mntinua and the 
corresponding information is summarized in the constitutive laws and in other 
parameters such as viscosity and heat conduction coefficients. This study also 
provides information on the nature and properties of the internal forces acting 
on the fluid, since, by definition, a deformable continuum, such as a fluid, 
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requires the existence of internal forces connected to the nature of the 
constitutive law. Separate studies are also needed to distinguish the various 
external forces which are able to  influence the motion of the system in addition 
to internal ones. These external forces could be gravity, buoyancy, Coriolis 
and centrifugal forces in rotating systems or electromagnetic forces in 
electrical conducting fluids. 

The concept of conservation, as mentioned above, means that the variation 
of a conserved (intensive) flow quantity within a given volume is due to the net 
effect of some internal sources and of the amount of the quantity which is 
crossing the boundary surface. This amount is called the flux, and its 
expression results from the mechanical and thermodynamical properties of the 
fluid. Similarly, the sources attached to a given flow quantity are also assumed 
to be known from basic studies. The fluxes and sources are, in general, 
dependent on the space-time Co-ordinates as well as on fluid motion. 

The associated fluxes are vectors for a scalar quantity and tensors for a 
vector quantity, such as momentum. The fluxes are generated from two 
contributions: one due to the convective transport of the fluid and another due 
to the molecular motion, which is always present even when the fluid is at rest. 
The effect of the molecular motion expresses the tendency of a fluid towards 
equilibrium and uniformity, since differences in the intensity of the quantity 
being considered create a transfer in space such as to reduce the non- 
homogeneity. This contribution to the total flux is proportional to the gradient 
of the corresponding quantity, since it has to vanish for a homogeneous 
distribution and therefore acts as a diffusive effect. 

Diffusive fluxes do not always exist; for instance, from an analysis of the 
physical properties of fluid it is known that in a single-phase fluid at rest no 
diffusion of specific mass is possible since any variation of specific mass 
implies a displacements of fluid particles. Therefore, there will be no diffusive 
flux contribution to the mass conservation equation. 

The general laws of physics tell us that certain quantities do not obey 
conservation laws. For instance, pressure (or entropy) does not satisfy any 
conservative equation while, as mentioned above, the motion of a fluid is 
completely described by the conservation laws for the three basic properties: 
mass, momentum and energy. 

1.1 GENERAL FORM OF A CONSERVATION LAW 

1.1.1 Scalar conservation law 

Let us consider a scalar quantity per unit volume I/, acting in an arbitrary 
volume a, fixed in space, bounded by a closed surface S (see Figure 1.1.1). The 
local intensity of U varies through the effect of fluxes, which express the 
contributions from the surrounding points to the local value and through 
sources Q.  The flux vector F contains two components, a diffusive contri- 
bution FIJ and a convective part Fc. The general form of a conservation law is 
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Figure 1.1.1 General form of a conservation law for a scalar 
quantity 

expressed in stating that the variation per unit time of the quantity U within 
the volume O ;  

should be equal to the net contribution from the incoming fluxes through the 
surface S ,  with the surface element vector d S  pointing outward: 

plus contributions from the sources of the quantity U. 

and the total contribution is 
These sources can be divided into volume and surface sources, Qv and QS, 

Hence the general form of the conservation equation for the quantity U is 

or, with Gauss’s theorem, for continuous fluxes and surface sources: 

This last form leads to the differential form of the conservation law, since 
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equation (1.1.2) is written for an arbitrary volume Q: 

or 

(1.1.3) 

(1 . 1 .4) 

It is seen from equations (1.1.3) and (1.1.4) that the surface sources have the 
same effect on the system as a flux term, and therefore we might as well 
consider them from the start as an additional flux. However, we would favour 
the present classification in fluxes and sources, since it allows a clear physical 
interpretation of all the contributions to the evolution of the quantity U. 

As essential aspect of the conservation law (1.1.1) lies in the observation that 
the internal variations of U,  in the absence of volume sources, depend only on 
the flux contributions through the surface S and not on theflux values inside 
the volume Q. Separating the flux vector into its two components FC and FD we 
obtain a more precise form of the equation. Indeed, the convective part of the 
flux vector Fc, attached to the quantity U in a flow of velocity Ü, is the amount 
of U transported with the motion, and is given by 

Fc = üu (1.1.5) 

The diffusive flux is defined as the contribution present in fluids at rest, due to 
the molecular, thermal agitation. It can be expressed by the generalized, 
gradient law of Fick: 

+ + 
F D =  - H P  V U  (1.1.6) 

where u is the quantity U per unit mass, i.e. U = pu, p is the specific mass of 
the fluid and H a diffusivity constant. Equation (1.1.3) then becomes 

~ + ~ . ( p U u ) = o . ( , p o u ) + Q v + ~ . p ~  (1.1.7) 

This equation is the general form of a transport equation for the quantity 
U = p u .  Observe that the diffusivity constant H has units of mZ/s for any 
quantity U .  

at 

1.1.2 Vector conservation law 

If the conserved property is described by a vector quantity fi then the flux 
becomes a tensor F ,  the volume source term a vector Qv and the conservation 
equation (1.1.2) becomes 

a f i d a +  $ F a d s =  Q v d Q +  $ & a d s  (1.1.8) 
at S R S 

- 

where the surface source term QS can also be written as a tensor. Applying 
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Gauss's theorem, if the fluxes and the surface sources are continuous, we 
obtain 

and the equivalent differential form 

QS) = Q" (1.1.1 O) 

Here again, the surface sources have the same effect as the flux term. 
The convective component of the flux tensor is given by 

- - 
F c = Ü @ c  (1.1.11) 

where 0 denotes the tensor product of the vectors 2 and c. In tensor 
notation, equation (1.1.11) becomes 

Fc,, = v;Uj (1.1.12) 

and the diffusive component of the flux takes the following form for an 
homogeneous system 

- FD,= - P H  -- - P H  aiuj a xi 
(1.1.13) 

with 

uj = puj (1.1 .14) 

The general forms (1.1.1) or (1.1.8) are to  be considered as the basic 
formulation of a conservation law and are indeed the most generally valid 
expressions, since they remain valid in the presence of discontinuous variations 
of the flow properties such as inviscid shock waves or contact discontinuities. 
Therefore it is important to note that the physical reality is described in the 
most straightforward and general way by the integral formulation of the 
conservation laws. Only if continuity of the flow properties can be assumed 
will equations (1.1.2) or (1.1.9) and their fully equivalent differential forms 
(1.1.3) or (1.1.10) be valid. 

1.2 THE EQUATION OF MASS CONSERVATION 

The law of mass conservation is a general statement of kinematic nature, that 
is, independent of the nature of the fluid or of the forces acting on it. It 
expresses the empirical fact that, in a fluid system, mass cannot disappear from 
the system nor be created. The quantity U is, in this case, the specific mass. As 
noted above, no diffusive flux exists for the mass transport, which means that 
mass can only be transported through convection. On the other hand, we will 
not consider multiphase fluids and hence no sources due to chemical reactions 
will have to be introduced. 
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The general conservation equation then becomes 

j I , p d O +  $ p U . d S = O  (1.2.1) 
a t  S 

and in differential form: 

++ G . ( p U ) = O  
a t  

(1.2.2) 

An equivalent form to equation (1.2.2) is obtained by working out the 
divergence operator and introducing the material or convective derivative: 

This leads to the following form for the conservation law of mass: 

dP - - + p V .  U = O  
d t  

(1.2.3) 

(1.2.4) 

Although both equations (1.2.2) and (1.2.4) are fully equivalent from a 
mathematical point of view they will not necessarily remain so when a 
numerical discretization is performed. Equation (1.2.2) corresponds to the 
general form of a conservation law and is said to be formally written in 
conservation or in divergence form. The importance of the conservative form 
in a numerical scheme lies in the fact that, if not properly taken into account, a 
discretization of equation (1.2.4) will lead to a numerical scheme in which all 
the mass fluxes through the mesh-cell boundaries will not cancel, and hence 
the numerical scheme will not keep the total mass constant. The importance of 
a conservative discretization of the flow equations has also been stressed by 
Lax (1954), who demonstrated that this condition is necessary in order to 
obtain correct jump relations through a discontinuity in the numerical scheme. 
We will return to this very important point in Chapter 6, where the finite 
volume method is presented, and in later chapters when discussing the 
discretization of Euler and Navier-Stokes equations in Volume 2. 

Alternative form of a general conservation equation 

The differential form of the general conservation equation (1.1.7) can be 
written in another way. If equation (1.2.2) multiplied by u is subtracted from 
the left-hand side of equation (1.1.7) we obtain 

or 
du 
d t  p - = -  

(1.2.5) 

(1.2.6) 

where is the diffusive component of the flux vector. 
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and in differential form: 

-+ V . ( p V ) = O  
at 
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a conservative discretization of the flow equations has also been stressed by 
Lax (1954), who demonstrated that this condition is necessary in order to 
obtain correct jump relations through a discontinuity in the numerical scheme. 
We will return to this very important point in Chapter 6, where the finite 
volume method is presented, and in later chapters when discussing the 
discretization of Euler and Navier-Stokes equations in Volume 2. 

Alternative form of a general conservation equation 

The differential form of the general conservation equation (1.1.7) can be 
written in another way. If equation (1.2.2) multiplied by u is subtracted from 
the left-hand side of equation (1.1.7) we obtain 

or 

(1.2.5) 

(1.2.6) 

where FD is the diffusive component of the flux vector. 
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Again, the difference between equations (1.2.5) or (1.2.6) and (1.1.7) lies in 
the conservative form of the equations. Clearly, equation (1.2.5) is not in 
conservation form and a straightforward discretization of equation (1.2.5) will 
generally not conserve the property u in the numerical simulation. It is also 
important to note that this conservation property is linked to  the convective 
term and that, in a fluid at rest, there is little difference between conservative 
form (1.1.7) and the non-conservative form (1.2.5). 

1.3 THE CONSERVATION LAW OF MOMENTUM OR EQUATION OF 
MOTION 

Momentum is a vector quantity and therefore the conservation law will have 
the general form given by equations (1.1.8) and (1.1.10). In order to determine 
all the terms of these equations it is necessary to define the sources influencing 
the variation of momentum. It is known, from Newton’s laws, that the sources 
for the variation of momentum in a physical system are the forces acting on it. 
These forces consist of the external volume forces and the internal forces 3. 
The latter are dependent on the nature of the fluid considered, and result from 
the assumptions made about the properties of the internal deformations within 
the fluid and their relation to the internal stresses. We will assume that the fluid 
is Newtonian, and therefore the total internal stresses u are taken to be 

= - P I +  7 (1.3.1) 

where Z is the unit tensor. Here the existence of the isotropic pressure 
component pZ is introduced and 5 is the viscous shear stress tensor, equal to 

(1.3.2) 

where p is the dynamic viscosity of the fluid, see for instance Batchelor (1970). 
A kinematic viscosity coefficient v is also defined by v = p / p .  This relation is 
valid for a Newtonian fluid in local thermodynamic equilibrium. Otherwise the 
most general form for the viscous stress tensor is 

(1.3.3) 

Up to now, with the expection of very high temperature or pressure ranges, 
there is no experimental evidence that the Stokes relation 

2p+3X=O (1.3.4) 

leading to equation (1.3.2) is not satisfied. Therefore we will not consider in 
the following the second viscosity coefficient X as independent from p.  As with 
the mass conservation equations, it is assumed that no diffusion of momentum 
is possible in a fluid at rest, and hence there is no diffusive contribution to the 
flux tensor F .  The source term Qv consists of the sum of the external volume 
forces per unit volume p x  and the sum of all the internal forces. 

By definition, integral forces cancel two per two in every point inside the 
volume. Therefore the remaining internal forces within the volume Vare those 
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acting on the points of the boundary surface, since they have no opposite 
counterpart within the considered volume. Hence the internal forces act as 
surface sources, with the intensity 

5 Z e d s  
S 

and the momentum conservation equation becomes 

(1.3.5) 

Applying Gauss's theorem, we obtain 

(1.3.6) 

which leads to the differential form of the equation of motion: 

(1.3.7) 

An equivalent, non-conservative form is obtained after subtracting from the 
left-hand side the continuity equation (1.2.2) multipled by v': 

p +  v .  7 + p x  (1.3.8) di7 - p - = - v  

a 
- ( p i ? ) +  v .  ( p u @  i?+pz- ? ) = p z  
a t  

d t  

where the material derivative d/dt has been introduced. 
When the form (1.3.2) of the shear stress tensor for a Newtonian viscous 

fluid is introduced into equations (1.3.7) or (1.3.8) we obtain the Navier- 
Stokes equations of motion. For constant viscosity coefficients, it reduces to 

di? - 
p -= - V p + p  

d t  
(1.3.9) 

For an ideal fluid without internal shear stresses (that is, for an inviscid 
fluid) the momentum equation reduces to the Euler equation of motion: 

(1.3.1 O )  

The vorticity equation 

The equations of motion can be written in many equivalent forms, one of them 
being obtained through the introduction of the vorticity vector 

- +  
{ =  v x  u (1.3.11) 
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and the vector identity 

(v ' .  v,u= v - - v ' X ( V X  5)  -( 2) (1.3.12) 

in the inertia term dv'/dt. Equation (1.3.8) becomes 

- _  (1.3.13) 
a t  

This equation will be transformed further by the introduction of thermo- 
dynamical relations after having discussed the conservation law for energy. 

An important equation for the vorticity ?can be obtained by taking the curl 
of the momentum equation. This leads to the Helmholtz equation: 

+ ( v ' .  v) f = ( f . 0)ü- f( v . 5) + vp x v 1 + v x v * 7 + v x 

(1.3.14) 

For a Newtonian incompressible fluid with constant kinematic viscosity 
coefficient u,  the shear stress term reduces to the Laplacian of the vorticity: 

at P (;- ) 

(1.3.15) 

1.4 ROTATING FRAME OF REFERENCE 

In many applications such as geophysical flows, turbomachinery problems or 
flows around helicopter blades, propellers and windmills we have to deal with 
rotating systems, and it is necessary to be able to describe the flow behaviour 
relatively to a rotating frame of reference. 

We will assume that the moving system is rotating steadily with angular 
velocity W around an axis along which a Co-ordinate z is aligned (Figure 1.4.1). 
Defining W as the velocity field relative to the rotating system and U = W x r a s  
the entrainment velocity, the composition law holds: 

u= W +  u =  G +  W X  r (1.4.1) 

Since the entrainment velocity does not contribute to the mass balance, the 
continuity equation remains invariant and can be written in the relative 
system: 

(1.4.2) 

With regard to the momentum conservation law, observers in the two systems 
of reference will not see the same field of forces since the inertia term dv'/dt is 
not invariant when passing from one system to the other. It is known that we 
have to add in the rotating frame of reference two forces, the Coriolis force 
per unit mass Tc: 

a P  - -+ V * ( p W ) = O  
at  

+ 
fc = -2(Wx W) (1.4.3) 
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Absolute reference /-- system 

Figure 1.4.1 Relative rotating frame of reference 

and the centrifugal force per unit mass x: 
4 

fc= - W x ( W x  T ) = w 2 R  ( I  .4.4) 

if R is the component of the position vector perpendicular to the axis of 
rotation. Hence, additional force terms appear in the right-hand side of the 
conservation law (1.3.5) if this equation is written directly in the rotating 
frame of reference. These two forces, acting on a fluid particle in the rotating 
system, play a very important role in rotating flows, especially when the 
velocity vector W has large components in the direction perpendicular to W .  

The conservation law for momentum in the relative system then becomes 

(1.4.5) 

and the transformation of the surface integrals into volume integrals leads to 
the differential form: 

a -(pW)+ V * ( p W ; l O W )  
at 

= p & - p i i x ( ~ x  i ) - 2 p ( ~ x  a)- Op+ V a  7 

(1.4.6) 
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The shear stress tensor 7 is to be expressed as a function of the relative 
velocities. It is considered that the rotation of the relative system has no effect 
on the internal forces within the fluid, since these internal forces cannot, by 
definition be influenced by solid body motions of one system of reference with 
respect to the other. A non-conservative form of the relative momentum 
equation similar to  equation (1.3.13) can be obtained as 

where the presence of the absolute vorticity vector is to be noted. 

1.5 THE CONSERVATION EQUATION FOR ENERGY 

It is known, from the thermodynamical analysis of continua, that the energy 
content of a system is measured by its internal energy per unit mass e. This 
internal energy is a state variable of a system and hence its variation during a 
thermodynamical transformation depends only on the final and initial states. 

In a fluid the total energy to be considered in the conservation equation is 
the sum of its internal energy and its kinetic energy per unit mass V2/2. We will 
indicate by E this total energy per unit mass: 

(1.5.1) v'z E = e + -  
2 

The first law of thermodynamics states that the sources for the variation of the 
total energy are the work of the forces acting on the system plus the heat 
transmitted to this system. 

Considering the general form of the conservation law for the quantity E w e  
have a convective flux of energy fi,: 

(1.5.2) 

and a diffusive flux fi,, written as - + 
FD = - y p x  Ve (1.5.3) 

since, by definition, there is no diffusive flux associated with the motion. The 
coefficient x is the thermal diffusivity coefficient and has to be defined 
empirically, together with the dynamic viscosity p.  The coefficient y is the ratio 
of specific heat coefficients under constant pressure and constant volume, 

Actually this diffusive term (1.5.3) describes the diffusion of heat in a 
medium at rest due to molecular thermal conduction. It is generally written in 
a slightly different form, i.e. under that of Fourier's law of heat conduction: 

fi,= - k V T  (1.5.4) 

y = Cp/Cv. 

+ 
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where T is the absolute temperature and k is the thermal conductivity 
coefficient. We have the relation 

PCP k = ~ C ~ K  = - 
Pr 

(1.5.5) 

where Pr is the Prandtl number: 

Pr = VI. = pc,lk ( 1.5.6) 

With regard to the sources of energy variations in a fluid system, a 
distinction has to made between the surface and the volume sources. The 
volume sources are the sum of the work of the volume forces x and the heat 
sources other than conduction (Le. radiation, chemical reactions) q H .  Hence 
we have, per unit volume, QV = p x  * Ü+ q H .  The surface sources Qs are the 
result of the work done on the fluid by the internal shear stresses acting on the 
surface of the volume considering that there are no surface heat sources; 

Qy = 5 .  ù= - p v +  7 . 5  (1.5.7) 

1.5.1 

Grouping all the contributions, the energy conservation equation in integral 
form becomes 

Conservative formulation of the energy equation 

(1.5.8) 

= $s k ? T -  d + 1 Cpx - Ù+ qH) dS2 + $ ( 5  - Ù) d S 
R S 

After transformation to volume integrals the differential form of the conserva- 
tion equation for energy becomes 

a 
at 
- ( p E ) + ? . ( p Ü E ) = t * ( k ? T ) +  ? - ( 5 * Ü ) +  w f + q H  (1.5.9) 

where Wf is the work of the external volume forces: 
+ 

Wf=pfe .  v (1.5.10) 

Clarifying the term ? - ( u  - Ü) and introducing the enthalpy h of the fluid 
leads to the following alternative expression in differential form: 

(1.5.11) a 
at  
- ( p E ) + ? . [ p Ü H - k ? T - r - Ü ] =  wf+qH 

where the stagnation, or total, enthalpy H is introduced: 

H = e + - + - = h + - = E + -  p ù2 Ü2 P 
P 2  2 P 

(1.5.12) 
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1.5.2 The equations for internal energy and entropy 

An equation for the variation of the internal energy e can be obtained after 
some manipulations (See Problem 1.2) and the introduction of the dissipation 
term eV: 

(1.5.13) 

This leads to 

a 
a t  
- ( p e ) + f .  ( p Ü h ) = ( v ' .  f ) p + e v + q H + f .  ( k?T)  (1.5.14) 

An alternative form is obtained after introduction of the continuity 
equation: 

4 

(1.5.15) 
de  
d t  

p - = - p (  v * Ü) + Ev + 0 - ( k ? T )  + q H  

The first term is the reversible work of the pressure forces (and vanishes in an 
incomprehensible flow), while the other terms are being considered as heat 
additions, with the dissipation term acting as an irreversible heat source. 
This appears clearly by introducing the entropy per unit mass s of the fluid, 
through the thermodynamic relation 

(1.5.16) 

The separation between reversible and irreversible heat additions is defined by 

T d s =  dq  + dq '  (1.5.17) 

where dq  is a reversible heat transfer to the fluid while dq '  is an irreversible 
heat addition. As is known from the second principle of thermodynamics, d q '  
is always non-negative and hence in an abiabatic flow (dq = O) with irreversible 
transformations, the entropy will always increase. 

Introducing definition (1.5.16) into equation (1.5.15), we obtain 

ds  
d t  

p T - = e v +  V . ( k V T ) + q H  (1.5.18) 

where the last two terms can be considered as reversible head additions by 
conduction and by other sources. Therefore, in an adiabatic flow, q H  = O, 
without heat conduction ( k  = O) the non-negative dissipation term eV behaves 
as a non-reversible heat source. 

Equation (1.5.18) is the entropy equation of the flow. Although this 
equation plays an important role it is not independent from the energy 
equation. Only one of these has to be added to the conservation laws for mass 
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and momentum. Note also that the entropy is not a 'conserved' quantity in the 
sense of the previously derived conservation equations. 

1.5.3 Energy equation in a relative system 

The energy conservation equation in a relative system with steady rotation is 
obtained by adding the work of the centrifugal forces, since the Coriolis forces 
do not contribute to the energy balance of the flow. 

In differential form we obtain the following full conservative form of the 
equation corresponding to equation (1.5.11): 

(1.5.19) 
a ( h;2L ;') - .  [ -( w z  ü2] 

- p  e+- - -  + V  p w  h + - - -  
a t  2 2  

with 

w f = p &  l? ( 1 .5.20) 

In non-conservative form equation (1.5.19) becomes, where d/dt  and a/at  are 
considered in the relative system, 

The quantity 
$2 u 2  

2 2  
I = h + - - - = H -  2 -  ( 1 .5.22) 

appearing in the left-hand side of the above equations plays an important role, 
since it appears as a stagnation enthalpy term for the rotating system. This 
term has been called the rothalpy, and it measures the total energy content in a 
steadily rotating frame of reference. 

1.5.4 Crocco's form of the equations of motion 

The pressure gradient term in the equation of motion can be eliminated by 
making use of the entropy equation (1.5.16) written for arbitrary variations of 
the state of the fluid. In particular, if the flow is followed in its displacement 
along its (absolute) velocity line, 

V P  + +  
T V S =  V h - -  

P 

and introducing this relation into equation (1.3.13), we obtain 

(1.5.23) 

(1 5 2 4 )  
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where the stagnation enthalpy H has been introduced. Similarly, in the relative 
system we obtain from equation (1.4.7) 

(1 S .25)  

where the rothalpy I appears as well as the absolute vorticity F. 
The introduction of entropy and stagnation enthalpy gradients into the 

equation of motions is due to Crocco, and equations (1.5.24) and (1.5.25) 
reveal important properties. A first observation is that, even in steady flow 
conditions, the flow will be rotational, except in very special circumstances, 
namely frictionless, isentropic and isoenergetic flow conditions, without 
external forces or with forces which can be derived from a potential function 
where the corresponding potential energy is added to the total energy H. An 
analogous statement can be made for the equation in the relative system where 
the total energy is measured by I .  However, since the absolute vorticity 
appears in the relative equation of motion, even under steady relative 
conditions, with constant energy Z and inviscid flow conditions without body 
forces, the relative vorticity will not be zero but equal to ( -  2;). The relative 
motion is therefore never irrotational but will have at least a vorticity 
component equal to minus twice the solid body angular velocity. This shows 
that, under the above-mentioned conditions of absolute vorticity equal to 
zero, the relative flow undergoes a solid body rotation equal to  20 in the 
opposite direction to the rotation of the relative system. 

Summary of the basic jlow equations 

The equations derived in the previous sections are valid in all generality for any 
Newtonian compressible fluid in an absolute or a relative frame of reference 
with constant rotation. The various forms of these equations can be summar- 
ized in the following tables. Table 1.1 corresponds to the equations in the 
absolute system, while Table 1.2 contains the equations written in the steadily 
rotating relative frame of reference. 
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PROBLEMS 

Problem 1.1 

Derive equation (1.4.7). 
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Problem 1.2 

Obtain the energy equation (1.5.14) for the internal energy e .  
Hint: Introduce the momentum equation multiplied by the velocity vector into 
equation (1.5.9). 

Problem 1.3 

Show that in an incompressible fluid at rest the energy equation (1.5.14) reduces to  the 
temperature conduction equation: 

Problem 1.4 

Show that the energy equation (1.5.1 1) reduces to a convection-diffusion balance of 
the stagnation enthalpy H when the Prandtl number is equal to one and when only the 
contribution from the work of the shear stresses related to  the viscous diffusion of the 
kinetic energy is taken into account. 

Hint: Assume constant flow properties, setting k = yce in the absense of external 
sources, and separate the contributions to  the term V ( 7  * U )  according to the 
following relations, valid for incompressible flows: 

V(7 - U )  = a,[p(a,v, + ~,u,)v,I = V a  [pV(~2/2)1 + V. [ p ( ~ .  V ) U ]  
Neglecting the second term, setting H = cp T + U2/2 leads to 

a 
a t  
- ( p E )  + f * ( p U H )  = ? .  ( p V H )  

Problem 1.5 

Obtain the entropy equation (1.5.18). 

Problem 1.6 

Prove equations (1.3.15). 

Problem 1.7 

Obtain equations (1.5.24) and (1.5.25). 



Table 1.1. The system of Bow equations in an absolute frame of reference 

Differential form 

Equation integral Conservation form Non-conservation form 

Conservation of h 1. p dQ + 
mass 

p Ü .  d i = O  a p  - -+ V . ( p ü ) = O  
a t  

dP - - + p V .  ü = o  
d t  

du' - - - 
p -= - v p +  v .  i +pfe  

Conservation of i n p Û d Q +  $ F ( p Ü @ Û + p l - i ) . d S  - p Ü + < . ( p Û @ Ü + p l - T ) = p ~  a 
a r  d t  momentum 

a d e  - 
Conservation of 
energy 

[, p E  dQ + 0 (p ÛH - k f T - 7 . Û) . d s apE + < : (p ÛH - k f  7 - 7 . Ü) = Wr + qH p = - pV ' Ü+ (7 . $)Ü+ <.  ( k f  T )  + qH 
7 a t  

Entropy equation 

P T -  d t  = eu + f .  ( k t  T )  + q~ 
d s  

uz 
2 

ü2 
E = e + - total energy 

2 

Definitions H = h + - stagnation enthalpy 
+ - -  wr = PX . ü work of external forces fe r = v X Û vorticity 

1 -  

21r 
qH heat source eL, = - (i @ 7 ') = (7 . <) . 1.7 viscous dissipation 



Table 1.2. The system of flow equations in a steadily rmting relative frame of reference 

Differential form 

Equation Integral form Conservation form Non-Conservation form 

Conservation of : i I I p d f l +  $ , F p W . d i = O  
mass 

a p  -+ V . ( p W ) = O  
at 

: i I I p W d f l +  $ ( p W @ @ + p I - ? ) . d S  - p W + f . ( p W @ W + p I - 5 )  a 

=p[S,-2WXW-WX(WX 31 

Conservation of 
momentum, 5 at 

= 1, p f i - 2 W x  I$- W x ( 3 x  31 dQ 

p - = - V p + V . 7 - 2 p ( W X W )  dW - + 

df 

Crocco's form 

Conservation of 
energy 

k < T -  5 

Entropy equation 

p T - =  di G . ( k + T ) + E , + q H  
dS 

@ Z  u'2 

2 2  
Definitions E * = e + - - - = E -  ü. 

$2 ü2 

I = h + - - - = H -  Ü . Û  rothalpy 

u =  wx ï 

v'= ü+ W 

2 2  

- - - *  
Wr = p fe . I work of external forces fe { = V x 17 absolute vorticity 

qH heat sburces 



Chapter 2

The Dynamic Levels of Approximation

INTRODUCTION

The system of Navier-Stokes equations, supplemented by empirical laws for
the dependence of viscosity and thermal conductivity with other flow variables
and by a constitutive law defining the nature of the fluid, completely describes
all flow phenomena. For laminar flows no additional information is required
and we can consider that any experiment in laminar flow regime can be
accurately duplicated by computations. However, and we could say unfor-
tunately from the point of view of computational fluid dynamics, most of the
flow situations occurring in rrature and in technology enter into a particular
form of instability, called turbulence. This occurs in all flow situations when
the velocity, or more precisely, the Reynolds number, defined as the product of
representative scales of velocity and length divided by the kinematic viscosity,
exceeds a certain critical value. The particular form of instability generated in
the turbulent flow regime is characterized by the presence of statistical
fluctuations of all the flow quantities. These fluctuations can be considered as
superimposed on mean or averaged values and can attain, in many situations,
the order of 10070 of the mean values, although certain flow regions, such as
separated zones, can attain much higher levels of turbulent fluctuations.

Clearly, the numerical description of the turbulent fluctuations is a formid-
able task which puts very high demands on computer resources. In the future,
with increasing computer power, both in speed and memory, we could be able
to simulate the large-scale turbulent fluctuations, or even the small-scale
turbulent motion, from the time-dependent Navier-Stokes equations. Esti-
mates of the computer requirements for this level of approximation can be i
found in Chapman (1979) and Kutler (1983).

Since this level is currently outside the reach of our computational capa-
bilities we will consider, as the highest level of approximation, the Reynolds-
averaged Navier-Stokes equations supplemented by some models for the
Reynolds stresses (Section 2.2). These models can range from simple eddy
viscosity or mixing length models to transport equations for the turbulent
kinetic energy and dissipation rates, the so-called k-e model, or to still more
complicated models directly computing the Reynolds stresses.

Considering the various stages within the dynamical level of approximation,
a first reduction in complexity can be introduced for flows with a small amount

26
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of separation or back flow and with a predominant mainstream direction at
high Reynolds numbers. This allows us to neglect viscous and turbulent
diffusion in the mainstream direction and hence to reduce the number of shear
stress terms to be computed, considering that they have a negligible action on
the flow behaviour. This is the thin shear layer approximation (discussed in
Section 2.3).

Within the same level we can situate the parabolic approximations for the
steady-state Navier-Stokes equations. In these approximations the elliptic
character of the flow is put forward through the pressure field, while all other
variables are considered as transported or as having a parabolic behaviour.
These methods solve an elliptic equation for the pressure correction defined
such as to satisfy continuity, assuming thereby that the pressure forces are
dominant together with the inertia forces, while the viscous and turbulent
forces are ,simplified and reduced to the transverse diffusion of momentum,
thereby excluding any separation (Section 2.4).

The next level to be considered is the boundary layer approximation,
referred to in Section 2.5. As is well known, this analysis of the effects of
viscosity by Prandtl is a most spectacular example of the impact on the
description of a flow system and of a careful investigation of the magnitude of
force components.

For flows with no separation and thin viscous layers, that is, at high
Reynolds numbers, a separation of the viscous and inviscid parts of the flow
can be introduced, whereby the pressure field is decoupled from the viscous
effects, showing that the influence of the viscous and turbulent shear st!esses is
confined to small regions close to the walls and that outside these layers the
flow behaves as inviscid. This analysis, which was perhaps the greatest
breakthrough in fluid mechanics since the discovery of the Navier-Stokes
equations, showed that many of the flow properties can be described by the
inviscid approximation (for example, determination of the pressure distribu-
tions), and that a simplified boundary layer approximation allows for the
determination of the viscous effects. The calculation of the inviscid and the
boundary layer parts of the flow can be performed interactively, taking into
account the influence of the boundary layers on the inviscid flow.

Recently a series of approaches in this direction have been developed, i.e.
the viscid-in viscid interaction methods, whereby attempts are made to
calculate or to model separated regions in an approximate way while keeping
the advantages with regard to the reduced computational effort of the
boundary layer approximations (see Le Balleur, 1983, for a recent review of
the subject). When this influence or interaction is neglected we enter the field
of the in viscid approximations, which allows generally a good approximation

l of the pressure field and hence of lift coefficient for non-separated flows.
! An intermediate level between the partially or fully viscous flow descriptions

and the inviscid approximation is the distributed loss model, used in internal
flow problems, particularly in the simulation of multi-stage turbomachinery
flows. Due to the large number of flow passages and their rotation with respect
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to the next blade row, we can consider that a downstream blade row sees, in a
first approximation, an averaged flow in the sense that the influence of the
boundary layers and the wakes of the previous blades mix out. Their overall
effect on the next blade can therefore be assimilated to a distributed friction
force and the implications of this approximation are presented in Section 2.6.

Within the inviscid approximations we can distinguish, next to the model of
the"time-dependent Euler equations (summarized in Section 2.7), a family of
stationary models for rotational flows, allowing a reduction of the number of
dependent variables (Section 2.8).

The potential flow model, limited to irrotational flows, is at a lower level of
approximation, due to the associated assumption of isentropicity. As will be
shown in Section 2.9, this leads to a description of discontinuities which
deviate from the Rankine-Hugoniot relations and occasionally to problems of
non-uniqueness. However, the potential flow model is equivalent to the Euler
equations for continuous, irrotational flows.

Table 2.1 summarizes the various levels of approximations defined in the
present approach and the corresponding mathematical models will be pre-
sented and discussed in detail in the following sections. Also, we will present
practical examples of computations performed at each level of approximation
as an illustration of the type of computations achieved with the model being
considered.

2.1 THE NA VIER-STOKES EQUATIONS

The most general description of a fluid flow is obtained from the full system of
Navier-Stokes equations. Referring to Table 1.1 of the previous chapter, the
conservation laws for the three basic flow quantities p, p V, pE can be written in
a compact form, expressing the coupled nature of the equations. We therefore
obtain the following system of equations:

a p-- -- -- ~v - - j 0
- pv +V' pv@V+pl-f = pie (2.1.1)
at ' E --N - -- kV--T lIT

p pv -f'v- ""f+qH

The above equation defines a (5 X 1) column vector U of the conservative
variables:

p
p PU:

U = pv = pv (2.1.2)

pE pw
pE

and a generalized (5 x 3) flux vector F:

pv
F= pv@ v+pl- 7' (2.1.3)

pvH- 7" v- kVT
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with Cartesian co-ordinates I, g, h, each of these components being a (5 x 1)
column vector. The right-hand side contains the source terms and these can be
grouped into a (5 x 1) column vector Q, defined by

0
Q =. pie (2.1.4)

Wr+ qH

The source terms express the effects of the external forces Ie, of the heat- -sources qH and of the work performed by the external forces Wr = pie' v.
The group of equations (2.1,1) then takes the following condensed form:

au - -
--fV'F=Q (2.1.5)
at

Expressed in Cartesian co-ordinates, we obtain the more explicit algebraic
form:

~+?1+~+~= Q (2.1.6a)
at ox oy oz

or, in an alternative condensed notation,

OtU + oxl + Oyg + ozh = Q (2.1.6b)

where u, v, ware the x, y, z components of the velocity vector v and the flux

vector F is defined by its components I, g, h (subscripts indicate the corres-
ponding Cartesian components):

pu
2pu + P - Txx

1= pUV-Txy (2.1.7a)
puw - Txz

H (- -) k aT
p u- f'Vx- ax

pv
pUV - Tyx

g= pV2+P-Tyy (2.1.7b)
pWV - Tyz

pHv - (1' ' v)y - k ~
oy

pw
puw - Tzx

h = pvw - TZJ' (2.1.7c)
2pw +P- Tzz

pHw - (1' ' v)z - k *
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The system of equations (2.1.6) is written in conservation form in Cartesian
co-ordinates. In practical configurations, however, the geometrical complexity
of the boundaries of the flow regions calls for meshes adapted to the curved
boundaries of the flow domain. This leads to curvilinear meshes, generally
body fitted in the sense defined by Thompson (1982), which, even when
numerically generated, can be considered as forming a family of curvilinear

, co-ordinate lines 1;,7], r.
Applying the general rules of tensor calculus, the conservative form of the

equations of motions can be maintained when written in an arbitrary
curvilinear co-ordinate system, as shown by Vinokur (1974) and Viviand
(1974).

The system of Navier-Stokes equations has still to be supplemented by the
constitutive laws and by the definition of the shear stress tensor as a function
of the other flow variables. We will consider here only Newtonian fluids for
which the shear stress tensor is defined by equation (1.3.2). The thermo-
dynamic laws define the internal energy e or the enthalpy h as a function of
only two other thermodynamic variables chosen betwee.n pressure p, specific
mass p, termperature T, entropy s or any other intensive variable. For
instance,

e= e(p, T) (2.1.8)
\or

h=h(p,T) (2.1.9)

In addition, the laws of dependence of the two fluid properties, the dynamic
viscosity coefficient IL and the coefficient of thermal conductivity k, are to be
given as a function of the fluid state, for instance of temperature and
eventually of pressure. In particular, the viscosity coefficient IL is strongly
influenced by temperature. For gases, a widely used relation is given by
Sutherland's formula (for instance, for air) in the standard international,
metric system:

3/2= 1.45 T.I0-6
(2 I 10)IL T + 110 . .

where T is in degrees Kelvin. Note that for liquids, the dynamic viscosity
decreases sfongly with temperature and that the pressure dependence of IL, for r
both gases and liquids, is small. The temperature dependence of k is similar to
that of IL for gases while for liquids, k is nearly constant. In any case, the
temperature and pressure dependence of IL and k can only be obtained, within
the framework of continuum mechanics, by experimental observation.

2.1.1 Perfect gas model

In many instances a compressible fluid can be considered as a perfect gas, even
if viscous effects are taken into account, and the equation of state is written as

E=rT (2.1.11)
p



--
where r is the gas constant per unit of mass and is equal to the universal gas
constant divided by the molecular mass of the fluid. The internal energy e and
the enthalpy h are only functions of temperature and we have the following
relations, taking into account that

CP=~ r (2.1.12) '\

where

'Y = ~ (2.1.13)
cv

is the ratio of specific heat coefficients under constant pressure, Cp and
constant volume Cv:

1 p
e=cvT=--

'Y-lp
(2.1.14)

'Y Ph = cpT=--

'Y-lp

The entropy variation from a reference state, indicated by the subscript A, is
obtained from equation (1.5.16) as

T p
s-sA=cpln- T -rln- (2.1.15)

A PA
or

. - - - (P/PA)S SA - r In (T/TA)'Y/('Y-l) (2.1.16)

Introducing the equation of state, we also obtain

1 -!!11!!!c--S-SA=Cv n(p/PA)'Y (2.1.17)

The stagnation variables can be derived from the total enthalpy H:

P 172
H=E+p=h+2=CpTo (2.1.18)

where the total or stagnation temperature To is defined by
-+2 ( 1 )To=,T+~= T, 1 +T M2 (2.1.19)

The Mach number M has been introduced by

M = 1£1 (2.1.20)
C

with

C2= (£E) ='YrT=1E (2.1.21)
iJp s p
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being the square of the speed of sound. Similarly, we have

E= cvTo (2.1.22)

Considering that the transition of the fluid from a static to a stagnation state
is adiabatic and without losses of energy (that is, isentropic), we have for the
stagnation pressure Po

Po (To)'Y/('Y-l) ( 'Y - 1 2)'Y/('Y-l) -= - = 1 +- 2 M (2.1.23)

p T

and hence relations (2.1.16) and (2.1.17) remain unchanged if the static
variables are replaced by the stagnation variables. For instance, we have

S - SA = - r In ml~~;--=T5 (2.1.24)

or

- - - I PO/POA (2 I 25)S SA - r n (H/HA)'Y/('Y-l) . .

Various other forms of the relations between thermodynamic variables
p, p, T, s, e, h can be obtained according to the choice of the independent
variables.

As a function of hand S we have(h)'Y/('Y-l) ,

L= - 'e-(s-s~)lr (2.1.26)
PA hA ' "

or, from equation (2.1.17),

(h)l/('Y-l) 1!-= - 'e-(s-sA)lr (2.1.27)

PA hA

Many other relations can be derived by selecting other combinations of
variables.

Practical examples "'.e,

Compressible flow around a circular cylinder The compressible flow around
a circular cylinder is an extremely complex flow case, since it contains the
unsteadiness generated by the Von Karman vortex streets (although the
incident flow conditions are stationary), separation and compressibility effects
in interaction with viscous wakes. Figures 2.1.1-2.1.3 show the results from
computations of this flow, with the full Navier-Stokes equations, for a perfect
gas at various Mach numbers M.., and at Reynolds numbers ranging from 103
to 8 106 (Ishii and Kuwahara, 1984; Ishii et al., 1985).

The spontaneously occurring unsteadiness of the wakes due to the periodic
vortex shedding has to be captured by the numerical computation through an
accurate simulation of the time behaviour. Figure 2.1.1 shows the computed
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~ 35
I

flow fields at an incident Mach number of 0.3 and for values of Reynolds
number ranging from subcritical (105) to supercritical (7.8 106). These
numerical results can be compared with flow visualizations at a Reynolds
number of 3.7 105 obtained with shadowgraph techniques at the Institut de
Mecanique des Fluides de Lille, France, by Dyment (1982) and Rodriguez
(1984) at a Mach number of 0.45. Successive pictures taken at 80 p,s intervals
and covering different phases of the vortex shedding cycle are shown in Figure
2.1.2.

The numerical treatment of boundary conditions can have a non-negligible
impact on the computed flow field, since the physical flow properties do not
allow us to impose conditions at the downstream boundary. An extrapolation
is applied from inside points towards the boundary, situated at a finite distance
from the cylinder. Although reasonable, this approximation introduces a
perturbation on the downstream flow field, and it is expected that the effect of
this perturbation are negligible. Computations at this level of approximation
allow a very detailed analysis of the flow mechanism, but are still expensive to
run, requiring 7-9 h on a supercomputer Hitachi S810 ( Ishii et 01., 1985) for
each Reynolds number.

The predicted drag coefficients agree well with the data in the subcritical and
critical regions, as seen in Figure 2.1.3, while they are underpredicted in the
supercritical regions at higher Reynolds numbers. This could be due to the
absence of turbulence models in these computations or (and) to numerical
errors.

I
Compressibility effects With increasing Mach number and intensity of the
acoustic waves the interaction and the coupling between compressibility
effects, vortex shedding and separation on the cylinder becomes more pro-
nounced. This appears on the calculated flow shown in Figure 2.1.4, where the
velocity distribution at incident Mach number M~ = 0.8, at two instants in
time, can be compared with a calculation at M~ = 0.95 for the same Reynolds
number of 5.106. The Mach number and density contours show the trace of
the oblique shock waves and the cylinder wake.

The influence of the compressibility on the flow around the cylinder is
I summarized in the beautiful series of pictures shown in Figure 2.1.5 taken at
I the lnstitut de Mecanique des Fluides de Lille, France, at different Mach

numbers and at a Reynolds number close to 105. A strong shock is gradually
generated downstream of the cylinder and a steady wake of increasing length
appears for Mach numbers from 0.70 to 0.90, with a periodic vortex shedding

: downstream of the shock. Above a certain value of M~, lambda shocks appear
I and when they join, no dis'turbances can travel upstream, preventing the

coupling between the wake and the vortex street. This can lead to a stationary
regime such as observed in certain circumstances at M~ = 0.98. The flow
visualizations show another important phenomenon, namely the appearance
of more than one flow regime at certain values of Mach and Reynolds
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numbers. Two unsteady flow configurations can be distinguished at M~ = 0.8
while at M~ = 0.98 both unsteady and steady flow regimes can occur.

These examples of non-unique solutions are not new. They are known to
exist for the Benard problem of a fluid heated from below and for the Taylor
problem of the flow between concentric cylinders, of which the inner one is
rotating. It is interesting to observe here that the non-uniqueness of the
stationary Navier-Stokes equations have been proved theoretically for these
flow cases (see, for instance, Temam, 1977).

The non-uniqueness properties of the viscous flows, connected to the
spontaneously generated unsteadiness, pose considerable problems for numer-
ical simulation. Very high accuracy, at the level of the discretization schemes
as well as in the treatment of the boundary conditions, is required in order to
be able to recover numerically multiple solutions, when they exist.
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Figure 2.1.6 Visualizations of the flow around a rectangular obstacle at various Mach numbers.
(a) Acoustic wave pattern and vortex shedding with shock interaction at higher Mach numbers;
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Compressible flow along a backward-facing step Another excellent test case I
for compressible, viscous computations is the flow along a rectangular body I

with a backward-facing step. The unsteady flow, with periodic vortex shedding
and progressively increasing interaction with the acoustic waves for increasing
Mach numbers, can be seen in Figure 2.1.6. These spectacular pictures show
the formation of the acoustic waves generated by the boundary layers along
the side walls (M~ = 0.8) and their progressive accumulation until their
coalescence into a shock at supersonic Mach numbers. Figure 2.1.6(b) shows a
more detailed view of the near base flow and the interaction between the shed
vortices and the shock waves at higher Mach numbers.

2.1.2 Incompressible fluid model

The Navier-Stokes equations simplify considerably for incompressible fluids
for which the specific mass may be considered as constant. This leads generally
to a separation of the energy equation from the other conservation laws if the
flow remains isothermal. This is the case for many applications which do not
involve heat transfer.

For flows involving temperature variations the coupling between the temp-
erature field and the fluid motion can occur through various effects, such as
variations of viscosity or heat conductivity with temperature; the influence of
external forces as a function of temperature (for example, buoyancy forces
in atmospheric flows); and electrically, mechanically or chemically generated
heat sources.

In the case of incompressible flows the mass conservation equation reduces
to - -V. v = 0 (2.1.28)

which appears as a kind of constraint to the general time-dependent equation
of motion, written here in non-conservative form:

au - - - 1- -
J.-a +(v.V)v=--Vp+p~v+ e (2.1.29)

t p

For incompressible flows, an alternative formulation can be obtained through
the Helmholtz vorticity equation (1.3.14):

af - - - - - - - -I - J. - _a +(v. V)r=(r. V)v+ Vpx v-+ Vx e+p~r (2.1.30)
t p

If no density stratification is to be considered the contribution of the pressure
term disappears completely from the vorticity equation. Moreover, for plane
two-dimensional flows the first term of the right-hand side vanishes. The
equation for the temperature field can be obtained through application of
equation (1.5.15), where the divergence-free condition for the velocity field is
introduced.

The system of equations for incompressible flow presents a particular
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situation in which one of the five unknowns, namely the pressure, does not
appear under a time-dependence form due to the non-evolutionary character
of the continuity equation. This actually creates a difficult situation for the
numerical schemes and special techniques have to be adapted in order to treat
the continuity equation. For more details we refer the reader to the corres-
ponding sections of Volume 2.

An equation for the pressure can be obtained by taking the divergence of the
momentum equation (2.1.29) and introducing the divergence-free velocity
condition (2.1.28), leading to

1 - - - - - -
- .'lp= -V'(V' V)v+ V' fe (2.1.31)
p

which can be considered as a Poisson equation for the pressure for a given
velocity field. Note that the right-hand side contains only products of
first-order velocity derivatives because of the incompressibility condition
(2.1.28). Indeed, in tensor notations the velocity term in the right-hand side is
equal to (OjV;)' (o;Vj).

For laminar, incompressible, isothermal flows no additional input is neces-
sary to solve the system of flow equations besides the value of the fluid
constants p and po. Therefore it can be considered that the domain of laminar
flows can be completely described for any set of initial and boundary
conditions by computation, without having to resort to additional empirical
information. Today, this phase can be considered to be close to realization,
even for three-dimensional flow situations at reasonable computer times.

Examples

Direct simulation for large-scale coherent structures The numerical simula-
tion of vortex shedding behind bluff bodies is of importance in view of
applications such as atmospheric flows around buildings, vehicle
aerodynamics or combustor flows. An impressive example of comput~tion of
the vortex shedding created by the flow around a square cylinder has been
reported by Davis et al (1984). Figure 2.1.7 compares the calculated flow field
with a visualization under similar conditions in a wind tunnel at a Reynolds
number of Re = 550. Figure 2.1.8 is an illustration of a similar computation by
these authors of an unstable mixing layer compared with a visualization under
the same conditions.

These results emphasize the stage achieved nowadays in the numerical
computation of complex flow fields via the resolution of Navier-Stokes
equations. Although, as can be seen from the above results, many aspects of
the flow can be reproduced, they are still to be considered as first approxima-
tions, since these computations are two-dimensional and do not contain the
effect of the small-scale turbulence.

The system of Navier-Stokes equations is indeed valid for the laminar flow
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Figure 2.1.8 (a) Computation of the coherent structures in a mixing layer at Re = 10000;
(b) comparison with visualizations. (Courtesy R. W. Davis, National Bureau of Standards)

r of a viscous, Newtonian fluid. In reality, the flow will remain laminar up to a
I certain critical value of the Reynolds number V, LI P, where V and L are
I representative values of velocity and length scales for the considered flow

system. Above this critical value the flow becomes turbulent and is charac-
terized by the appearance of fluctuations of all the variables (velocity,
pressure, density, temperature, etc.) around mean values. These fluctuations
are of a statistical nature and hence cannot be described in a deterministic way.
However, they could be computed numerically in direct simulations of
turbulence, such as the 'large eddy simulation' approach, whereby only the
small-scale turbulent fluctuations are modelled and the larger-scale fluctua-
tions are computed directly. The reader can find a review of the state of the art



(a)

( b)

Figure 2.1.9 Time history of particles (hydrogen
bubbles) generated along a line normal to the wall
in a turbulent boundary layer, showing a coherent,
bursting structure. (a) Experiments; (b) comput-
ations. (Reproduced by permission of AIAA from

Moin, 1984)

of direct numerical simulation of turbulence in Rogallo and Moin (1984) and
Moin (1984). Although this approach requires considerable computer resour-
ces, it has already led to very encouraging results.

A typical example of the direct numerical simulation of a turbulent bursting
structure in a wall boundary layer as obtained by Moin and Kim (1982) is
shown in Figure 2.1.9 compared with an experimental observation of the same
structure. At present these approaches are still far from being applicable for
practical calculations in industrial environments, due to the considerable
requirements they put on computational resources. There is no doubt,
however, that these methods will become increasingly important in the future,
since they require the lowest possible amount of external information in
addition to the basic Navier-Stokes equations.

Meanwhile there is a need to resort to a lower level of approximation,
whereby the equations are averaged out, in time, over the turbulent fluctua-
tions. This leads to the so-called Reynolds-averaged Navier-Stokes equations,
which require, in addition, empirical or at least semi-empirical information on
the turbulence structure and its relation to the averaged flow.
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2.2 THE REYNOLDS-AVERAGED NA VIER-STOKES EQUATIONS

t The turbulent averaging process is introduced in order to obtain the laws of
motion for the 'mean', time-averaged, turbulent quantities. This time averag-
ing is to be defined in such a way as to remove the influence of the turbulent
fluctuations while not destroying the time dependence associated with other
time-dependent phenomena with time scales distinct from those of turbulence.

Turbulent averaged quantities

For any quantity A the separation

A=A+A' (2.2.1)



--
is introduced with

- 1 I T/2 A(x,t)=-
T A(x,t+r)dr (2.2.2)

-T/2

where T is to be chosen large enough compared with the same time scale of
the turbulence but still small compared with those of all other unsteady

phenomena.
Obviously, this might not be always possible: if unsteady phenomena occur

with time scales of the same order as those of the turbulent fluctuations the
Reynolds-averaged equations will not allow us to model these phenomena.
However, it can be considered that most of the unsteady phenomena in fluid
dynamics have frequency ranges outside the frequency range of turbulence,

Chapman (1979).
For compressible flows the averaging process leads to products of fluctua-

tions between density and other variables such as velocity or internal energy.
In order to avoid their explicit occurrence a density-weighted average can be

introduced, through

A = ~ (2.2.3)
p

with

A = A + A" (2.2.4)

and

p;pr = 0 (2.2.5)

This way of defining mean turbulent variables will remove all additional
products of density fluctuations with other fluctuating quantities. This is easily
seen by performing the averaging process defined by equation (2.2.3) on the
continuity equation, leading to

a -+ -+at p + v . (p U) = 0 (2.2.6)

A more complete discussion can be found in Cebeci and Smith (1974).
Applied to the momentum equations, we obtain the following equation for

the turbulent mean momentum, in the absence of body forces:

a -+ - -+ -+ -at (p U) + v . (p iT (8) iT + pI - Tv - T R) = 0 (2.2.7)

where the Reynolds stresses, T R, defined by

TR = -pv" (8) v" (2.2.8a)

are added to the averaged viscous shear stresses Tv. In Cartesian co-ordinates
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we have

~- -- vl/v!/ (2 2 8b)T/) - P / ) . .

The relations between the Reynolds stresses and .the mean flow quantities are
unknown. Therefore the application of the Reynolds-averaged equations to
the computation of turbulent flows requires the introduction of some modell-
ing of these unknown relations, based on theoretical considerations coupled
with unavoidable empirical information. Several of the most widely used of
these turbulence models will be presented in Volume 2 when dealing with the
Navier-Stokes equations.

In a similar way, the turbulent averaged energy conservation equation can
be obtained under different forms according to the definition taken for the
averaged total energy, and again we refer the reader to Volume 2 for a more

I detailed discussion.

I

Practical examples

Unsteady oscillatory flow in an axisymmetric inlet The spontaneously gen-
erated instability of the flow in an engine inlet (called 'inlet buzz') has been
computed by Newsome (1983) with the Reynolds-averaged Navier-Stokes
equations and a Cebeci and Smith algebraic turbulence model. Figure 2.2.1
shows the sequence of Mach contours at different times during the third buzz
cycle at low mass flow (sub critical) regime for an incident Mach number of
two. The oscillations develop as a consequence of a shear layer instability due
to separated boundary layers, which amplify small pressure disturbances in a
closed feedback loop of reflected expansion and compression waves. Strong
shock wave interactions and unsteady boundary layer separations are marked
phenomena of this complex flow pattern. We can observe during the oscill-
ation cycle the backward displacement of the bow shock, which is forced
towards the tip of the centrebody as a result of the interaction with a reflected
compression wave generated from the separated flow downstream of the
shock. During this phase (t = 15.9-17.1 ms) a region of reverse flow extends
between the base of the bow shock and the cowl lip, with a shear layer dividing
the two regions. The bow shock remains in its position at the centrebody tip
for a period of time corresponding to the propagation and reflection of an
expansion wave. Then the inlet begins again to ingest mass, and the shock
moves forward to the cowl lip. During this phase (t = 21.5-23.9 ms) several
regions of separated flow can be observed alternatively on the centrebody and
the cowl.

Since the shear layer separation is the essential mechanism which amplifies
the small disturbances this flow computation is very sensitive to the turbulence
model. Too large values of the eddy viscosity prevent the occurrence of the
instability and, clearly, more sophisticated turbulence models are required for
this very complex flow, Newsome (1983).
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Figure 2.2.3 Three-dimensional flow field around the turret of Figure 2.2.2, Reynolds-averaged
Navier-Stokes computation with algebraic turbulence model. Flow in a vertical cross section at

two instants in time (Reproduced by permission of AIAA from Purohit et 01., 1982)

Flow around a three-dimensional obstacle The fully three-dimensional,
separated flow around a surface-mounted bluff obstacle (turret) has been

computed by Purohit et at. (1982) with a Cebeci and Smith algebraic

turbulence model. Figure 2.2.2 shows the geometry of the turret and the

surface mesh system, while some flow patterns are shown in Figures 2.2.3 and

2.2.4 in a vertical and horizontal plane cross-section at an incident Mach

number of 0.55 and a Reynolds number of 107 per metre and at two instants in

time. A clear appearance of vortex shedding, similar to the flow around a

cylinder, can be observed in the z-x horizontal plane (Figure 2.2.4). The

figures display the velocity field, Mach number and density contours at two

instants in time, showing the naturally occurring unsteady flow field for

stationary incident flow conditions.
As already shown in previous examples, large separated flow regions behind

bluff bodies tend to generate a time-dependent flow field, associated with
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Figure 2.2.4 Three-dimensional flow field around the turret of Figure 2.2.2, Reynolds-averaged
Navier-Stokes computation with algebraic turbulence model. Flow in a horizontal cross section at

two instants in time. (Reproduced by permission of AIAA from Purohit et 01., 1982)

vortex shedding and fluctuating separation lines. In this three-dimensional
flow the unsteady separation and vortex formation in the vertical cross-
sections, as well as in the horizontal planes, can be observed in Figure 2.2.4.
Figure 2.2.5 shows an instantaneous pattern of limiting streamlines on the
developed turret surface, illustrating the complex system of separated regions
and saddle-point singularities. The points marked S are saddle-point singu-
larities, while the points N are nodes of attachment of the flow. Observe also
the asymmetric nature of the separation lines. Although this computation
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provides more information and flow details than experimental observations
might give, it is still essential to compare it with experimental data in order to
assess the validity of the turbulence models.

Flow in an internal combustion engine The computation performed by
Schock et 01. (1984) aims at analysing the effects of compression ratio,
rotational speed and valve-setting angle on the formation and destruction of
vortices within an axisymmetric piston-cylinder configuration. A two-
equation model for turbulence is applied, since the time evolution of the
turbulent intensity is of primary importance to the combustion process.
Figures 2.2.6 and 2.2.7 show the mean velocity field and turbulent profiles at
different instants within the cycle for two valve-setting angles of zero and 45°.
The formation of valve and cylinder vortices during the intake stroke can be
seen. The valve vortex breaks down into two new vQrtices which merge with
the cylinder vortex, followed by their dissipation. The creation and decrease of
turbulent intensity is also shown at different times. Turbulence is generated at
the shear layers of the air jet drawn into the cylinder and stimulated by the
value vortex breakdown.

This effect is very sensitive to the valve-seat angle and the generated
turbulence is higher for a valve seat of 45° when compared with the
corresponding situation at 0° seat angle. The calculation of Schock et al.
(1984) is the first to have shown the relation between the intensity of turbulence

j
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and the valve geometry. This is of great importance, since the turbulence
intensity determines the rates of fuel-air mixing and of combustion.

Flow in a turbine blade row The three-dimensional flow in turbine blade
rows is characterized by a strong leading edge horseshoe vortex, generated by
the incident end wall boundary-layer velocity profile. Figure 2.2.8 shows the
oil traces of the end-wall flow with the traces of the vortex, confirmed by a
visualization in the vertical plane, through a laser light sheet technique
superimposed on the same picture. A viscous calculation of this flow (for a
similar turbine blade row) has been performed by Hah (1984) with the
stationary Reynolds-averaged Navier-Stokes equations and a two-equation
turbulence model, corrected for curvature effects via an algebraic Reynolds
stress formulation.

The horseshoe vortex flow generates a saddle-point singularity where two
separation lines, Sl, S2, and two re-attachment lines, ai, a2, meet. These lines
divide the end-wall flow field into distinct regions of three-dimensional flows.
This can be seen on the computed results of Figure 2.2.9(a) (at 1 % span from
the wall) for an inlet angle of 32.2°. The experimental position of the saddle
point, measured at the wall, is also shown. The details of the separation
regions appear, as well as the trace SI-S2 of the horseshoe vortex. Figure
2.2.9(b) shows a similar computation with a fully developed and thicker inlet

Figure 2.2.8 Visualization of the leading-edge horseshoe vortex for a turbine blade row. A
vertical, laser sheet cross section is superimposed, showing the vortical slructure. (Courtesy

C. Sieverding, Von Karman Institute for Fluid Dymanics, Belgium)
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Figure 2.2.9 (a) Computed velocity field in a turbine blade row at I OJ. span from the end wall for
an inlet angle of 32.2 ; (b) Computed velocity field at IOJ. span from th~ end wall for a fully
developed inlet boundary layer. (Reproduced by permission of the American Society of

Mechanical Engineers from Hah, 1984.)

boundary layer. The effect of the thicker boundary layer on the location of the
saddle point can be noticed, showing a displacement towards the pressure side
of the blade and a more severe crossflow.
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2.3 THE THIN SHEAR LAYER (TSL) APPROXIMATION

At high Reynolds numbers wall shear layers, wakes or free shear layers will be
of limited size, and if the extension of the viscous region remains limited
during the flow evolution then the dominating influence of the shear stresses
will come essentially from the gradients transverse to the main flow direction.

If we consider an arbitrary curvilinear system of co-ordinates with ~ I and ~2
along the surface and ~3 = n, directed towards the normal, then the thin shear

layer (TSL) approximation (Figure 2.3.1) of the Navier-Stokes equations
consists of neglecting all ~I and ~2 derivatives occurring in the turbulent and
viscous shear stress terms (Pulliam and Steger, 1978; Steger, 1978). This
approximation is also supported by the fact that, generally, at high Reynolds
numbers (typically Re> 104) the mesh is made dense only in the direction
normal to the shear layer, and therefore the neglected terms are computed with
a lower accuracy that the normal derivatives.

The general form of the conservation equations (2.1.5) remains unchanged
in the TSL approximation:

au - -ai+ V. F= Q (2.3.1)

but the flux F is simplified such that, in the contributions of the viscous terms,

V. TT and V.(TT. v) (2.3.2)

all derivatives with respect to ~I and ~2 are neglected: that is, only the normal
derivatives are maintained.

This leaves as the remaining contribution of the ith component of the shear
stress gradient, with n the normal direction:

(V.T);=~=~(Tn); (2.3.3)

... 227Z////// ~=o

Visco
region

x

Figure 2.3.1 Thin shear layer approximation
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in which the derivatives with respect to f.l and f.2 are also neglected in the
calculation of T. In equation (2.3.3) a shear stress vector Tn is introduced with
components Tin.

This approximation is actually close to a boundary-layer approximation,
since viscous terms which are neglected in the boundary layer approximation
are also neglected here. However, the momentum equation in the directions
normal to the shear layer is retained, instead of the constant pressure rule over
the boundary layer thickness along a normal to the wall. Therefore the
transition from viscous dominated regions to the inviscid region outside the
wall layer is integrally part of the calculation, and we have here a form of
'higher order' boundary-layer approximation. The classical boundary-layer
approximation is obtained when the momentum equation in the direction
normal to the wall is replaced by

apan = 0 (2.3.4)

The TSL approximation amounts to neglecting the viscous diffusion in the
direction parallel to the shear surface and keeping only the contributions from
the diffusion in the normal direction.

In Cartesian co-ordinates, with x, y co-ordinates in the tangent plane and z
normal to the surface, the shear stresses are approximated by

(~ aVj aVi ) 2 ~ (avz)T" = II U3 ' - + 03 ' - - - "U" - (235 )I) r I az :J az 3 r IJ az . .

and, in particular,

, = (£!:!~ ~ ) (236)7,3 p. 3 az + az . .

where i = 3 corresponds to the variable z.
The explicit form of the shear stress components in the TSL approximation

are obtained from equation (2.3.5), writing u, v, w for the components
Vx, Vy, Vz respectively:

2 aw
Txx = Tyy = - - p. -

3 az

Txy = 0

auTxz = p. az (2.3.7)

avTyZ = p. a:;:

4 aw
Tzz ="3 p. az
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Although, with the exception of Txy, the shear stress components do not
vanish, the only contributions to the shear stress gradients are, according to
equation (2.3.3),- - (a )- (a )- (a )-V' f ~ az Txz Ix + az Tyz ly + az Tzz lz (2.3.8)

The flux components f, g, h, defined by equation (2.1.7), simplify to

pu pv
pU2 + p puv

f= puv g;:: pV2+p
puw pvwt puH pvH

pw (2.3.9)

au
puw-p,- az

avh = pvw - p, -
az

2 4 aw
pw +p--p,- 3 az

aTpwH - (TzxU + T'J'V + Tzz w) - k az

As can be observed, the x and y components of the flux vectors reduce to their
inviscid form, and the viscous terms are entirely concentrated in the normal
flux component h.

The x-momentum equation becomes, in the TSL approximation,

I ~ (pu) + fx (pU2 + p) + fy (puv) + ~ (puw) = ~ (p,~) (2.3.10)

and a similar equation for the y-component:

I a a a a a ( au)at (pv) + ax (puv) + ay (pV2 + p) + ~ (pvw) = az p, az (2.3.11)

The normal projection, in the z-direction, of the momentum equation
becomes

a a a a 4 a ( ow)at (pw) + ax (puw) + ay (pvw) + az (pW2 + p) = 3 az p, az (2.3.12)

Practical examples

Viscous flow along an airfoil The TSL approximation, coupled to an

I
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algebraic turbulence model (and a laminar-turbulent transition point fixed at
11"10 of the chord) has been applied by Pulliam and Steger (1985) to the flow
along an airfoil. Figure 2.3.2 shows the computed transonic pressure distribu-
tion, plotted as a pressure coefficient Cp = (p - p~)/q, where q is the upstream
dynamic pressure, compared to experimental data, for the RAE 2822 super-
critical airfoil, at a Reynolds number of 5.7 106 and incident conditions of
M~=0.676 and a~= 1.93°. In the same figure we can observe a comparison
between the computed and observed boundary layer growth, expressed by the
chord wise evolution of the displacement thickness «5 * and of the momentum

thickness (J. This example is typical of the flow situations for which the TSL
approximation is fully valid.

Cp
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-computatiOn !. . Experiment ...

-1.0 ~ * 0008 : !
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,7""'-" 0 ,/" --'" 0004
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Figure 2.3.2 Pressure distribution and boundary layer thickness variations as computed
with a thin shear layer approximation for the RAE 2822 supercritical airfoil. Incident
conditions are M~ = 0.676, a~ = 1.93° and Re = 5.7 106. 0*: displacement thickness; 9:
momentum thickness; ~ experimental data. (Reproduced by permission of AIAA from

Pulliam and Steger, 1985)
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The supercritical airfoils are characterized by a shock-free transition from
supersonic to subsonic flow conditions at well-defined incident Mach numbers
and flow angles. Actually, the development of supercritical profiles is one of
the most spectacular outcomes of transonic computational fluid dynamics,
since its use on civil aircraft allows a significant reduction of wing drag and
hence in fuel consumption. Most recent civil aircraft are therefore designed
with supercritical wings.

Figure 2.3.3 shows a computation of the same airfoil but at off-design
incident conditions of M~ = O. 73, a~ = 2.79° and Re = 6.5 106. The shock is
correctly captured and the considerable increase in boundary layer thickness
arising from the shock boundary layer interaction can clearly be seen.
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Figure 2.3.3 Pressure distribution and boundary layer thickness variations as computed
with a thin shear layer approximation for the RAE 2822 supercritical airfoil. Incident
conditions are M~ = O. 73; Q~ = 2.79 and Re = 6.5 106. 15. Displacement thickness; 8
momentum thickness; ~ experimental data. (Reproduced by permission of AIAA from

Pulliam and Steger. 1985)
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Figure 2.3.4 Thin shear layer approximation on a NACA
0012 airfoil at M.,=0.8. a., = 2. Re= 1.106. Mach number
contours show the thickening of the viscous region after
interaction with the shock. (a) Complete flow picture; (b)
detailed flow picture showing the interaction region and the
wake. (Reproduced by permission of A1AA from Nakahashi

and Deiwert, 1985)
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The comparison with the data shows that some improvement is still
necessary' in this strong interaction region, probably at the level of the
turbulence modelling or at that of the TSL approximation itself, since a small
region of separated flow appears at the base of the shock. A similar
computation, performed on a NACA 0012 symmetrical airfoil (Nakahashi and
Deiwert, 1985), shows on the Mach number contours the thickening of the
viscous region after the interaction with the shocks (Figure 2.3.4).

Aircraft afterbody }lows The strongly interacting flow behind an aircraft
afterbody has been computed by Deiwert et a/. (1984) with a TSL approxi-
mation. The shock structure in the exhaust plume and its interaction with the
viscous base region can be seen in Figure 2.3.5, where a Schlieren picture of the
flow field is also shown. The lines corresponding to the shocks, shear layers
and contact discontinuities taken from the Schlieren photograph have been
drawn on the computed isoline plots, and show very good agreement with
computations.

In the near-base region large separated flows can sometimes be observed (for
instance, when the jet diameter is smaller than the base diameter). In this case,
afterbody shear layer-wake interactions induce a strong recirculation, and the
computation of this effect seems to be at the limits of the validity of the TSL
approximation (Deiwert et a/., 1984). This can be considered as a general
statement: large separated, viscous dominated regions should be computed not
with the TSL approximation but with the full Navier-Stokes equations.

Density
contours

Isobars
Schlieren photograph

(Agrell,FFA)

(a) (b)

Figure 2.3.5 Computed density and isobar contours for the cylindrical afterbody with centred
jet. The jet pressure pj = 6p~, M~ = 2.0 and the jet Mach number is Mj = 2.5. (a) Computed

results; (b) experimental Schlieren photograph taken under the same conditions. (Reproduced by

permissiqn of AIAA from Deiwert et 01., 1984)
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2.4 THE PARABOLIZED NAVIER-STOKES APPROXIMATION

The parabolized Navier-Stokes (PNS) approximation is based on considera-
tions similar to the TSL approximation but applies only to the steady-state
formulation of the Navier-Stokes equations. This approximation is directed
towards flow situations with a predominant main flow direction, as would be
the case in a channel flow, whereby the cross-flow components are of a lower
order of magnitude. In addition, along the solid boundaries the viscous
regions are assumed to be dominated by the normal gradients and, hence, the
streamwise diffusion of momentum and energy can be neglected.

If x is the streamwise co-ordinate, the x-derivatives in the shear stress terms
are all neglected compared with the derivatives in the two transverse directions

Figure 2.4.1 Parabolized Navier-Stokes approximation
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y and z. A similar approximation is introduced into the energy diffusion
terms. This approximation is therefore valid as long as the mainstream flow of
velocity u is dominant, that is, as long as the positive x-direction corresponds
to the forward flow direction. This will no longer be the case if there is a region
of reverse flow of the stream wise velocity component. In this case, the
stream wise derivatives of u will become of the same order as the transverse
derivatives and the whole approximation breaks down.

In Cartesian co-ordinates the shear stress terms reduce to the following form
for the x-component: - - 0 0 0

(V. f)x=axTxx+a:v TXY+az Txz

(2.4.1 )
0 0~ a:v Txy + az Txz

neglecting the stream wise derivative. The same approximation is introduced
into the computation of T. Hence

Txx = 2p. ~ - ~ p.(~ +!!!!- + ~ )ox 3 ox oy oz
(2.4.2)

~ - ~ p.(!!!!- + ~ )3 oy oz

ou
Txy ~ p. a:v (2.4.3)

ou
Txz ~ p. az (2.4.4)

resulting in

- = 0 ( au) 0 ( au)(V. T)x~-:- p.- +- p.- (2.4.5)

oy oy oz oz

The mainstream momentum equation reduces to

0 2 0 0 0 ( au) 0 ( au)-(pu +p)+-(puv)+-(puw)=- p.- +- p.- (2.4.6)
ox oy oz oy oy oz oz

Without these approximations the right-hand side of equation (2.4.6) would
contain a term of the form ox(p.oxu), making the whole equation elliptic in the
(x, y, z) space. However, with the present approximation there is no second-
order derivative in x and the equation is therefore parabolic in x. This variable
can be considered as playing the role of a pseudo-time, and hence the
'parabolized' x-momentum equation can be integrated by advancing in this
direction, solving in each x-plane an elliptic problem in y-z.

The transverse momentum equations are obtained in a similar way. For
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instance, the y-component becomes I

a a a I- (puu) + -;- (pU2 + p) +;- (puw)
ax I/Y I/Z

(2.4.7)

4 a ( au ) a ( au ) 2 a ( ow ) a ( ow )=3ay JLay +az JLaz -3ay JLaz +az JLay

where the approximations- - a a a
(V . T)y = ax Txy + ay Tyy + az Tyz

~ ~ T (2.4.8)

:=~+~

ay az

with

au 2 ( au ow )Tyy := 2JL ay - 3 JL ay +az (2.4.9)

(au ow )Tyz = JL az + ay (2.4.10)

have been introduced. Similarly, the 'parabolized' energy equation becomes'

a a a
- (puH) + -;- (puH) + ;- (p wH)

ax I/Y I/Z

(2.4.11)

=~(T' V)y+~(T' v)z+~
( k~ ) +.!!.- ( kO-I )ay az ay ay az az

where the same approximations are introduced in (T . v). Note that the

continuity equation remains unchanged.
The above set of equations can be solved in various ways, and more details

will be given in Volume 2. One approach, often applied, consists of solving
equations (2.4.6) and (2.4.7) for u, u and a similar equation for w as a Poisson
equation in each (y, z) plane, the streamwise derivatives of the pressure being
obtained from a separate calculation. In particular, an initial guess for the
pressure terms is introduced into the momentum equations, leading to an
approximate velocity field which will generally not satisfy the continuity
equation. Therefore an additional correction to the pressure is introduced and
related to a corresponding velocity field correction, such as to satisfy the mass
conservation equation. These methods are known as 'pressure correction
methods', and will be discussed in Volume 2.

Practical example

Viscous flow in curved ducts The subsonic, viscous flow in curved ducts has
been computed by Towne (1984) with a parabolized Navier-Stokes approxim-
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ation, both for laminar and turbulent flows. A comparison of the laminar and
turbulent flows in the same S-shaped duct of Figure 2.4.2 can be seen from
Figures 2.4.3-2.5.1, together with experimental data. These remarkable
results show the validity of the parabolized Navier-Stokes model for this
family of flows where no stream wise separation occurs. The circular S-shaped
duct, shown in Figure 2.4.2, is formed by two circular arc bends, with
R = 336 mm and D = 48 mm, corresponding to a ratio R/ D = 7. The laminar
flow case corresponds to a Reynolds number of Re = 790, while for the
turbulent case Re = 48 000. Figure 2.4.3 compares the laminar and turbulent
computed streamwise velocity contours at four stations. The effects of the
secondary flows on the streamwise velocities can be followed. The top
boundary layer thickens as the flow progresses downstream due to the
accumulation of secondary vorticity. This can also be seen in Figure 2.4.4,
where the velocity profiles are shown and compared to experimental data. The
agreement is excellent, particularly for the computation with the finer mesh.
The turbulent flow behaves in a similar way to the laminar flow, with the
difference of thinner boundary layers.

Figure 2.5.1 shows the secondary velocity field in two sections, one near the
inflection plane and another near the exit plane. In the first half of the S-duct a
secondary flow pattern sets in, typical of curved ducts. In the second half the
secondary vorticity is of opposite sign and attenuates the cross flow vortices set
up in the first part. Near the exit plane the sign of the cross flow near the walls
has been reversed. The turbulent flow shows the same properties, but the
secondary vortices and the cross flow are of lower magnitude.

Observe, however, in this example the considerable quantitative difference
between laminar and turbulent flows, which stresses the importance of
turbulence modelling.

10
Flow ~ Figure 2.4.2 Geometry of circular S-duct configuration
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( b )

Figure 2.4.3 Computed streamwise velocity contours at four
sections of the S-duct of Figure 2.4.2. (a) Laminar flow;
(b) turbulent flow. (Reproduced by permission of AIAA from

Towne, 1984.)
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Figure 2.4.4 Computed and experimental streamwise velocity profiles in the symmetry
planes of four stations of the S-duct of Figure 2.4.2. (a) Laminar flow; (b) turbulent flow.I (Reproduced by permission of AIAA from Towne, 1984.)
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2.5 THE BOUNDARY LAYER APPROXIMATION

It was the great achievement of Prandtl to recognize that at high Reynolds
numbers the viscous regions remain of limited extension 0 (of the order of
oIL =: J("VT[1L> for a body of length L) along the surfaces of solid bodies
immersed in or limiting the flow. Hence in all cases where these viscous regions
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Figure 2.5.1 Computed secondary flow velocity field in two planes of the S-duct of Figure
2.4.2. (a) Laminar flow; (b) turbulent flow. (Reproduced by permission of AIAA from

Towne, 1984.)

remain close to the body surfaces (that is, in the absence of separation) the
calculation of the pressure field may be separated from that of the viscous
velocity field. A detailed discussion of the condition for the derivation of the
boundary layer equations can be found in Batchelor (1970), Schlichting (1971)
and Cebeci and Bradshaw (1984).

The boundary layer equations can be considered as derived from the TSL
equations of Section 2.3 by introducing additional assumptions concerning the
velocity component w in the direction Z, normal to the wall (Figure 2.5.2).
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Figure 2.5.2 Boundary Layer velocity profiles

Referring to equation (2.3.12), it is assumed that the flow in the direction
normal to the wall has a negligible effect on the flow in the direction parallel to
the surface, since the normal velocity component w is much smaller than u and
v almost everywhere in the boundary layer (the three components go to zero at
the wall). Hence equation (2.3.12) reduces to the condition on the normal
gradient of the pressure:

~ = ~= 0 (2.5.1)
az an

As a consequence, the pressure p(x, y, z) inside the viscous boundary layer
may be taken to be equal to the pressure outside this layer and therefore equal
to the value of the pressure Pe(X, y), obtained from an inviscid computation.
The pressure Pe(X, y) is the value taken by the inviscid pressure field at the
edge of the boundary layer of the surface point (x, y).

Hence the boundary layer equations are obtained from the streamwise and
I cross flow momentum equations of the TSL approximations (2.3.10) and
I (2.3.11), with the replacement of p(x, y, z) by Pe(X, y):

a a 2 a a ape a ( au)- (pu) +- (pu )+ - (puv) +- (puw) = - -+- p. - (2.5.2)
i at ax ay az ax az az
I

a a a 2 a ape a ( au)- (pv) + - (puv) + - (pv ) + - (pvw) = - -+ - p. - (2.5.3)
at ax ay az ay az az

The inviscid pressure gradient, which is obtained from an inviscid calcula-
tion prior to the resolution of the boundary layer equations, acts as an external
force on the viscous region. The same inviscid computation also provides the
velocities ue(x, y) and ve(x, y) at the edge of the boundary layer, connected to
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the pressure field Pe by the inviscid equation

'due -- -- -- --P-aT + p(Ve' V)Ve = - VPe (2.5.4)

where ue is the velocity vector of components Ue and ve.
Equations (2.5.2) and (2.5.3) are to be solved with the additional boundaryd' . I

con luons

U = Ue
(2.5,5)

v= Ve

at the edge of the boundary layer. The system of equations obtained in this
way has only the velocities as unknowns, and this represents a significant
simplification of the Navier-Stokes equations. Therefore the boundary layer
equations are much easier to solve, being basically close to standard parabolic
second-order partial differential equations, and many excellent numerical
methods have been developed (Kline, 1968; Cebeci and Bradshaw, 1977),

The inviscid region is limited by the edge of the boundary layer, which is
initially unknown, since the computational process has to start by the
calculation of the pressure field. In the classical boundary layer approximation
the limits of the inviscid region are taken on the surface, which is justified for
small boundary layer thicknesses. This leads to a complete separation of the
pressure field and the velocity field, since the pressure in the remaining
momentum equations (2.5.2) and (2.5.3) is equal to the values of the inviscid
pressure field at the wall and is known at the moment these equations are to be
solved.

When the influence of the boundary layers on the inviscid flow field is
considered as non-negligible this interaction can be taken into account in an
iterative way by recalculating the inviscid pressure field with the -limits of the
inviscid region located at the edge of the boundary layer obtained at the
previous iteration. This procedure is applied for thick boundary layers up to
small separated regions and is known as the viscid-in viscid interaction
approximation (see Le Balleur, 1983, for a review of the subject).

Practical examples

In practice the boundary layer approximation is often used for non-separated
flow conditions at high Reynolds numbers. This corresponds, in the
aeronautical domain, to flight conditions close to design or cruise. In these
cases the boundary layer approximation provides a valuable and economical
way of estimating lift and drag of various aircraft components. The following
examples have been obtained by Tinoco and Chen (1984).

Wing pressure distribution on B737-300 aircraft The pressure distribution at
different spanwise sections of the wing of a Boeing B737-300 aircraft (with



79

CFM 56-3 engines} is shown in Figure 2.5.3. These results are obtained from a
three-dimensional potential flow computation of the wing-body combination,
including the engine nacelle, followed by boundary layer computations, in an
iterative way. We can observe the shock jump in the pressure distribution, with
increasing magnitude from the base to the tip of the wing. The cross-section
close to the engine shows an attenuated shock intensity, a consequence of the
interaction between the flow around the nacelle and the wing.

737-300/CFM56-3
Mach = 074. a calc = a test

-1 -12

Computation
-0 Test -0.8

Cp Cp
-0 -04

0 . 00. 10
x/c 04 04

08 ~ ~--~~~J

737-300/CFM56-3-Mach = 074
acalc = atest

-1

-08 -08

Cp' Cp
-04 -04

00 00
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0

08

Figure 2.5.3 Wing surface pressure distribution on Boeing 737-300 aircraft computed with an
inviscid model followed by a boundary layer computation and compared with experimental

data. (Reproduced by permission of AlAA from Tinoco and Chen, 1984.)
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Turbofan nacelle Figure 2.5.4 shows the pressure distribution at five posi-
tions around the fan cowl of a powered nacelle at an angle of inclination
(droop angle) of 5°. Flight Mach number is M = 0.84 and generates a transonic

flow along the upper surface. The inviscid flow field is obtained from a
resolution of the full Euler equations and is subsequently coupled iteratively
to a three-dimensional boundary layer computation. The latter takes into
account laminar-turbulent transition and empirical information on shock
boundary layer interactions. Both these examples indicate a good overall
agreement with experimental wind tunnel data.

A more detailed agreement, in difficult conditions such as these three-
dimensional flow fields around complex geometries, requires computations at
higher levels of approximation. The present examples are probably close to the
best that can be achieved in such cases with the rather simple boundary layer
approximations. This is confirmed by the author's indications that the data on
shock-boundary layer interactions introduced in the computations are essen-
tial to obtain the level of agreement with experiments shown in Figures 2.5.3
and 2.5.4.
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2.6 THE DISTRIBUTED LOSS MODEL

The distributed loss model is an approximation applied essentially in internal
and channel flows, particularly in the fields of turbomachinery, river hydrau-
lics and oceanography. This model is defined by the assumption that the effect
of the shear stresses on the motion is equivalent to a distributed friction force,
defined by semi-empirical data.

Considering the internal flow in a multistage turbomachine, the background
of this approximation can easily be understood. Due to its three-dimensional,
unsteady, viscous nature, the description of the full three-dimensional flow
through the various stages of the machine, including effects such as presence of
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end walls, tip-clearance flows and relative motions between rotating and
non-rotating blade rows, is a considerable computing task which cannot be
achieved at present within reasonable computing times and costs. Since such a
calculation would, however, be the only way of obtaining, with an adequate
turbulence model, a reliable estimation of the loss mechanisms and loss
distributions, empirical information with regard to these losses will have to be
introduced instead. In turbo machinery flow calculations these losses are
defined on an overall or averaged basis as the stagnation pressure drop
between the inlet and the outlet of a blade row, without taking into account
details of the physical mechanism or the exact location of the producing
regions. Therefore at this level of approximation there is no point in
considering the detailed structure of the shear stresses in a flow description
where the loss sources are introduced as empirical functions of certain flow
parameters. Hence their effect on the flow can be attributed to a distributed
friction force. The resulting approximation is then basically of an inviscid
nature but not isentropic, since the entropy variation along the path of a fluid
particle will be connected to the energy dissipation along this path.

Obviously, a certain number of three-dimensional flow details will be lost in
such an approximation, especially all flow aspects which can be attributed to,
or are strongly influenced by, viscous effects. In particular, the flow in the
regions close to blade surfaces or end walls will not be described correctly in
this model unless a boundary layer type of approximation is superimposed on
the overall flow obtained by the distributed loss model. However, it is assumed
that the main effects of the averaged flow can be correctly described by this
approximation, at least in the main regions of the flow. A similar approxima-
tion is introduced in river hydraulics, where the effects of the wall friction are
represented by an empirical resistance force.

The distributed loss model therefore consists of replacing the shear stress
terms by an external friction force, function of velocity or other flow variables,
but not directly expressed as second-order derivatives of the velocity field.

The general flow equations in a relative frame of reference rotating with a
unique angular velocity i:J are summarized in Table 1.2, with the assumption
that all quantities have been averaged for the turbulent fluctuations according
to Section 2.2.

The momentum equation is considered in Crocco's form (1.5.25), without
external forces:

ow - - - - 1 - -
-:;--wXs'"=TVs-VI+-V'" (2.6.1)
ut p

The energy equation in conservation form (1.5.19) without heat sources
(qH = 0), is

!I [ ( -2 -2 )]u W U - - - - ---
at p e + 2 - 2 + V, (pwI) = V, (kVT) + V, (" 'w) (2.6.2)

The additional (but not independent) relatipn for the entropy variation
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(1.5.18) plays an important role:

ds - -
pTdt=V.(kVT)+tv (2.6.3)

where the dissipation term tv is defined

tv = -.!.- (7 @ 7T) = (7 . V) . W (2.6.4)
2lte

The basic assumption of the distributed loss model lies in the consideration
of the shear stress term in the momentum equation as a distributed friction
force Fr, responsible for the overall entropy increase in the flow:

PFr = V . 7 (2.6.5)

By a definition of the distributed loss model we have
ds - - .

T dt = - w . Fr (2.6.6)

expressing that the work of the distributed friction forces Fr can only be
transformed into non-reversible heat and hence serves only to increase the
entropy. This can actually be considered as the definition of a friction force in
the sense that it expresses the difference between a friction force and any other
forces able to produce useful work.

The entropy equation can be transformed to

ds - - - - - - - - - - - - -
pT-= V.(k VT)+(f. V). w= V.(k VT)+ V.(f. w)- W.(V. f)

dt

(2.6.7)

Comparing these last two relations, it appears that the approximations of the
distributed loss model imply that the contribution to the energy (and entropy)
equation of the energy diffusion due to the viscous and turbulent stresses is
compensated by the heat diffusion. Hence this model is defined by the
approximation - - - - -V. (k VT) + V. (f . w) = 0 (2.6.8)

A more severe assumption would be to neglect heat diffusion and consider the
second term of equation (2.6.8) to vanish.

Obviously, this cannot be generally valid in regions with strong shear stress
gradients and therefore the present model is not able to describe accurately the
flow in the wall regions. The friction force Fr will be considered as an external
force defined by equation (2.6.6) and not by equation (2.6.5). In addition, Fr is
assumed to be oriented in the direction opposite to the local velocity vector w.
Hence for positive values of Fr,

- - wFr = - Fr. lw = - Ff - (2.6.9)
W
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where 7w is the unit vector in the direction of the velocity vector wand

equation (2.6.6) becomes

dsT - = + wFr (2.6.10)
dt

Assumption (2.6.9) for the direction of the friction force Pc is in agreement
with the shear layer approximation and boundary layer theory whereby the
dominant contribution to the gradient of the shear stresses is given by its

normal component (see equation (2.3.3»:

- - - a ( aw) a ( a I w I) - pFr= V' T ~- 1"- ~- 1"- . lw (2.6.11)

an an an an

if n is the direction normal to the wall. Since the second derivative of w is
generally negative in the boundary layer regions the vector Pc will indeed be
opposite to the main velocity direction, as is to be expected from a friction

force.
An important consequence of the assumptions made in the distributed loss

model concerns the energy equation which reduces to the simplified form:

a [ ( -2 -2 )]at p e + T - T + V' (pwI) =.0 (2.6.12)

or, with equation (1.5.21):

~= ~ (2.6.13)
Pdt at

Therefore the general form of the equations defining the present model are

~ + V' (pw) = 0 (2.6. 14a)
at

aw - - - -
-- wx f= TVs- VI+ Fr (2.6.14b)
at

p !.d I = ~ (2.6. 14c)

t at

dsTdt = wFr (2.6.14d)

Since the details of the loss mechanism (that is, of the shear stresses) are not
considered, these equations are to be taken as describing an inviscid model but
with an entropy-producing term. The boundary conditions for the velocity
field are therefore the inviscid conditions of vanishing normal velocity
components at the walls, with a non-vanishing tangential velocity along these

boundaries.
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Steady-state formulation

This model is generally further simplified by the assumption of steady relative
flows. In the turbomachinery environment this will be justified as long as the
inlet flow conditions can be considered as uniform in the direction of blade
rotation. This implies that the presence and effects of the wakes shed from the
upstream blades are neglected. Recent detailed data on rotor stator interaction
(Dring et al., 1982) show that the unsteady pressure generated by upstream
wakes can be locally very significant, although the time-averaged flow is in
good agreement with steady-state calculations. Therefore we can consider the
steady-state model for the relative flow as a valid approximation for the
time-averaged flow at constant angular velocity. This leads to the following
simplified models, where the equation of continuity has been introduced in the
energy and entropy equations:- -V' (pw) = 0 (2.6.15a)- - - - -

-wxt=TVs-V/+Fr (2.6.15b)- -w.v/=o (2.6.15c)- - --
Tw' Vs= -w' Fr= wFr (2.6.15d)

In particular, the energy equation reduces to the constancy of the rothalpy I
along a flow path. It is to be noted also that the last equation (2.6. 15d), which
can be deduced from the momentum and energy conservation laws, is used as a
definition for the friction force Fr.

Systems (2.6.14) or (2.6.15) contain six equations for five unknowns, W, s, /.
Therefore when use is made of the entropy equation one of the momentum
equations can be dropped out of the system.

The model described above is used extensively in the field of turbomachinery
flow calculations with the introduction of empirical data for the loss
coefficients without the computation of the shear stresses, and a more detailed
presentation can be found in Hirsch (1984) and Hirsch and Deconinck (1985).

Practical example

Meridional through-flow in a multistage compressor The distributed loss
model is most frequently applied to multi-stage turbo machinery flows in
connection with a quasi-three-dimensional approximation, which describes the
properties of tangentially averaged flow variables. Figure 2.6.1 (from Hirsch
and Warzee, 1976) represents flow variables averaged over the blade spacing,
as a function of radius, at different stations of the meridional cross-section of
a two-stage axial fan compared with experimental data. Observe that the
accuracy of the computed flow variations is strongly dependent on the quantity
of the empirical input as expressed by the friction force.
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2.7 THE IN VISCID FLOW MODEL-EULER EQUATIONS

The most general flow configuration for a non-viscous, non-heat-conducting
fluid is described by the set of Euler equations, obtained from the
Navier-Stokes equations (2.1.1) by neglecting all shear stresses and heat
conduction terms. As is known from Prandtl's boundary layer analysis, this is
a valid approximation for flows at high Reynolds numbers outside viscous
regions developing in the vicinity of solid surfaces.

This ~pproximation introduces a drastic change in the mathematical formul-
ation with respect to all the previous models containing viscosity terms, since
the system of partial differential equations describing the inviscid flow model
reduces from second oraer to first order. This is of paramount importance,
since it will determine the numerical and physical approach to the computation
of these flows. Also, the number of allowable boundary conditions is modified
by passing from the second-order viscous equations to the first-order inviscid

system.
I The time-dependent Euler equations, in conservation form and in an

absolute frame of reference, for the conservative variables U defined by
equation (2.1.2):

~+V'F=Q (2.7.1)
at

form a system of first-order partial differential equations hyperbolic in time (as
will be shown later), where the flux vector F has the Cartesian components
I, g, h given by equations (2.1.7) without the shear stresses terms:

pu
pU2 + p

f= puv (2.7.2a)
puw
puH
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pv
puv

g= pV2+p (2.7.2b)
pvw
pvH

pw
puw

h = pvw (2.7.2c)
pW2 + p
pwH

and the source term Q is given by equation (2.1.4). Generally, heat sources qH
will not be considered since heat conduction effects are neglected in the system

of Euler equations.
It is important to note the properties of the entropy variations in an inviscid

flow. From equation (1.5.18), and in the absence of heat sources, the entropy
equation for continuous flow variations reduces to

(as -+ -+ )T at + v. Vs '= 0 (2.7,3)

expressing that entropy is constant along a flow path. Hence the Euler
equations describe isentropic flows in the absence of discontinuities.

The value of the entropy can, however, vary from one flow path to another,
This is best seen from Crocco's form of the momentum equation (1.5.24),
when applied to a stationary, inviscid flow in the absence of external forces.
We obtain

-+ -+ -+ -+- vx.\'"= TVs- VH (2.7.4)
... -+-+-+-+

In an IntrInSIC co-ordinate system I" 1°' Ib, where 11 is directed along the
velocity and 7b is the binormal unit vector, equation (2.7.4) becomes,
projected in the normal direction n, for uniform total enthalpy,

asW.\'"b = Tan (2.7.5)

This relation shows that entropy variations in the direction normal to the local
velocity direction is connected to vorticity. Hence entropy variations will
generate vorticity and, inversely, vorticity will create entropy gradients.

As is known, the set of Euler equations also allows discontinuous solutions
in certain cases, namely vortex sheets, contact discontinuities or shock waves
occurring in supersonic flows. The properties of these discontinuous solutions
can only be obtained from the integral form of the conservation equations,
since the gradients of the fluxes are not defined at discontinuity surfaces.

2.7.1 The properties of discontinuous solutions

For a discontinuity surface E, moving with velocity C, the integral conserva-
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tion laws are applied to the infinitesimal volume V of Figure 2.7.1. Referring
to equations (1.1.2) and (1.1.8), the integral form of the Euler equations takes
the following form in the absence of any source terms:

ar ! at J v U dO + j sF. d S = 0 (2.7.6)

The time derivative of the volume integral has to take into account the
motion of the surface E, and hence of the control volume V, through

~ 1 v U dO = 1 v ~ dO + 1 v U ~ (dO)

'lA'c' (2.7.7)1 au ~ ~ of...~llow oft(
= - dO - UC. dS ...t oS II,.. c~,,"1 v.I.".\

v at s

expressing the conservation of the volume V in the translation with velocity C. .~..

The flux term in equation (2.7.6) can be rewritten for vanishing volumes
V(j). --. 0) as

~sP.dS= II; (Pz-Pi).df= II; [P.ln]dE (2.7.8)

where df is normal to the discontinuity surface E and where the notation

[A]=Az-Ai (2.7.9)

denotes the jump in the variable A when crossing the discontinuity.
Combining equations (2.7.7) and (2.7.8) in equation (2.7.6) we obtain, for

vanishing volumes V,

r ([FJ-C[U]).-df:=O (2.7.10)
J}.;

L

G) C

@

Figure 2.7.1 Control volume ABCD around a discontinuity
surface E moving with velocity C
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leading to the local form of the conservation laws over a discontinuity, called
the Rankine-Hugoniot relations:

[F]' In- C[U]. In=O (2.7.11)

If E(x, t) = 0 is the discontinuity surface, then we have

dE oE ... ...- = -+ C' VE =0 (2.7.12)
dt at

With the unit vector along the normal 1 n defined by

... VE
In = TVE\ (2.7.13)

equation (2.7.11) takes the form

[FJ. VE +~ [U] =0 (2.7.14)
at

Various forms of discontinuities are physically possible; for example,
shocks where all flow vaTiables undergo a discontinuous variation, and contact
discontinuities and vortex sheets (also called slip lines) across which no mass
transfer takes place but where density, as well as the tangential velocity, may
be discontinuous although pressure and normal velocity remain continuous.

The properties of these discontinuous solutions can best be seen from a
reference system moving with the discontinuity. In this system the dis-
continuity surface is stationary (C = 0) and the Rankine-Hugoniot relations
for the Euler equations become

... ...
[pv'ln]=O (2.7.l5a)

[V'] pv.ln+ [p]ln=O (2.7.l5b)
... ...

pV' In[H] =0 (2.7.l5c)

This system admits solutions with the following properties.

Contact discontinuities

These are defined by the condition of no mass flow through the discontinuity:

Vnl=Vn2=0 (2.7.l6a)

and, following equation (2.7 .15b), by continuity of pressure

[p] =0 (2.7.l6b)

allowing non-zero values for the jump in specific mass, as seen from equation
(2.7.l5a):

[p]~O (2.7.16c)
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In addition, tangential velocity can be continuous:

[VI] =0 (2.7.16d)

Vortex sheets or slip lines

These are also defined by the condition of no mass flow through the

discontinuity:
vn! = Vnl = 0 (2.7 .17a)

and, following equation (2.7 .15b), by continuity of pressure

[p] =0 (2.7.17b)

allowing non-zero values for the jump in tangential velocity, as seen from
equation (2.7 .15b):

[VI] ;c 0 (2.7.17c)

coupled to a jump in density

[p] ;c 0 (2.7.17d)

Shock surfaces

Shocks are solutions of the Rankine-Hugoniot relations with non-zero mass
flow through the discontinuity. Consequently pressure and normal velocity
undergo discontinuous variations while the ta~gential velocity remains con-

I tinuous. Hence shocks satisfy the following properties:

[p] ;c 0

[p];cO (2.7.18a)
[vn] ;c 0

and

[VI] =0 (2.7.18b)

Note that since the stagnation pressure po is not constant across the shock.
the inviscid shock relations imply a discontinuous entropy variation through 1:1';1(2.,'
the shock. This variation has to be positive, corresponding to compression

: shocks and excluding hereby expansion shocks, for physical reasons connected
with the second principle of thermodynamics, Shapiro (1953); Zucrow and
Hoffman (1976).

It has to be added that expansion shocks, whereby the entropy jump is
negative, are valid solutions of the inviscid equations since, in the absence of
heat transfer, they describe reversible flow variations. Hence there is no
mechanism allowing for distinguishing between discontinuities with entropy
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increase (positive entropy jump) or entropy decrease (negative entropy varia-
tion). An additional condition, called the entropy condition, has therefore to
be added to the inviscid equation in order to exclude these non-physical
solutions, Lax (1973). This is necessary for all inviscid flow models, and a
more detailed discussion of the entropy condition is presented in Volume 2.

The mathematical formulation of the second principle of thermodynamics
can be expressed, for an adiabatic flow without heat conduction or heat
sources qH = 0, following equation (1.5.18): .

(as -- -- )pTat+v'VS =tv (2.7.19)

Since tv is the viscous dissipation and always positive this equation states that
any solution of the Euler equations which has a physical sense as a limit, for
vanishing viscosity of real fluid flow phenomena, has to satisfy the following
entropy inequality: (as -- -- )pT at+ v. Vs ~ 0 (2.7.20)

In addition, a non-uniform discontinuity, such as ~ shock with varying
intensity, will generate a non-uniform entropy field in the direction normal to
the velocity. Equation (2.7.5) then shows that as a consequence, vorticity will
be generated downstream of the shock. Hence even for irrotational flow
conditions upstream of the shock a rotational flow will be created by a
non-uniform shock intensity. ..

Compressible vorticity equation

An interesting relation is obtained for the ~orticity transport in inviscid flow
conditions. The vorticity equation (1.3.14) becomes, in the absence of external
forces,

d -- -- -- -- -- -- --1- r=(r. V)v- r(V' v)+ Vpx V- (2.7.21)
dt p

The last term will vanish if the isentropic relations are taken into account.
Indeed, the condition of isentropicity implies a unique relation between p and
p of the term p = p(P). In particular, for a perfect gas we have, from equation

(2.1.17),
p = k . p'Y (2.7.22)

With the continuity equation the second term can be replaced by the material
derivative of the density, leading to

~ f = (f. V) v + I ~d P (2.7.23)

dt p t
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or

~ (f) = (Y) v (2.7.24)

This relation shows that in a two-dimensional flow, tip is conserved along a
path line.

Practical examples

Two-dimensional flows on airfoil sections The flow over the NACA 0012
airfoil is a widely used test case for two-dimensional flow computations, and a
large number of results are available. The following can be considered as most
accurate numerical solutions of the Euler equations, having been selected after
a very careful investigation of a large number of computations by an AGARD
Working Group, reporting in AGARD AR 211 (1985). A series of computed
flow distributions at increasing incident Mach numbers are shown in Figures
2.7.2 and 2.7.3 for the NACA 0012 profile, from M~ = 0.85 to M~ = 1.2 at zero
degree incidence. These computations can now be obtained with high accuracy
and low computational cost, and may be considered as excellent approxima-
tions to the 'exact' inviscid flow. However, comparison with experimental data
(to be found in Harris, 1981) indicate the influence of viscosity on the overall
flow properties. At subsonic velocities (Figure 2.7 .4(a» these effects are small,
while in the presence of shock waves (Figure 2.7 .4(b» the shock boundary
layer interaction clearly has a significant local effect which can only be
described by inclusion of viscous effects.

Two-dimensional air intake The inviscid flow at supersonic speeds in an air
intake represents a very complex flow system, and Figure 2.7.5 shows the
results of a computation based on the inviscid Euler equations, where grid and
isoMach lines are shown at incident Mach numbers of M~ = 1.8,2 and 3. The
shock structures are well captured and their gradual evolution with increasing
Mach numbers can be analysed from these calculations.

Although a similar test case, computed with a Navier-Stokes model and
shown in Figure 2.2.1, indicated an instability cycle (called inlet buzz) as a
result of the the interaction between the shocks and the turbulent wall
boundary layers, the determination of the flow properties obtained from an
inviscid analysis is nevertheless essential for an understanding of the influence
of viscous interactions. It is indeed imperative to dispose of an accurate
numerical solution of Euler flows, before introducing viscous terms in the
inviscid model, in order to make certain that the phenomena observed
resulting from the introduction of viscous terms are not obscured by numerical
errors, such as numerical viscosity.

Leading-edge vortex flow The flow field around a delta wing at supersonic
conditions is a challenging case for computations with the Euler equations,
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Figure 2.7.2 Pressure and Mach number distribution on a
NACA 0012 profile at M~ = 0.85 and 00 incidence. (a) Surface
pressure distribution; (b) isoMach contours. (Courtesy M.
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Figure 2.7.3 IsoMach contours for the NACA 0012 profile at
incident Mach numbers M~ = 0.95 and M~ = 1.2. (From

AGARD AR 211 Report, 1985)
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Figure 2.7.4 Comparison of inviscid surface pressure distribution with experimental data on
the NACA 0012 airfoil. (a) M~ = 0.50, 7° incidence (note the comparison with the potential
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(a)

(b)

Figure 2.7.5 Inviscid computation of the flow in an air intake at supersonic Mach numbers. (a)
Grid geometry; (b) isoMach lines at incident Mach numbers of M~ = 1.8,2 and 3. (Reproduced by

permission of AIAA, from Borrel and Montagne, 1985.)

since the vortex generated at the leading edge has to be captured by the
calculations, although the incident flow is irrotational. In the inviscid Euler
model the leading-edge vortex therefore appears as a vortex sheet discon-
tinuity. A comparison of this flow field when computed with Euler and
Navier-Stokes models provides indications of the validity range of the Euler
models as a function of the required accuracy and the flow conditions.

In the examples of Figure 2.7.6 we can observe the validity of the inviscid
Euler model for these low-incidence, high Mach number conditions, although
the flow is subsonic in the leading-edge region. It appears that the location and
intensity of the leading-edge vortex is predicted with good accuracy by the
inviscid computation, although flow details close to the wing surface are
obviously not to be relied upon in the inviscid model. It particular, a small
secondary separated region appears in the Navier-Stokes computations as the
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Figure 2.7.6 Comparison of computations with the Euler and Navier-Stokes flow models of the
flow along a delta wing at incident Mach number of M~ = 1.95. Crossplane velocity fields are shown
at three spanwise sections. (Reproduced by premission of AIAA from Rizzetta and Shang, 1984.)

vortex structure moves downstream, which is not seen by the Euler calcula-
tion. This secondary vortex results from the no-slip condition coupled to the
inviscid recompression towards the leading edge, and is fully confirmed by
experimental observations.

Three-dimensional in viscid flow in a steam turbine stage Turbomachinery
flows can be extremely complicated, particularly when the interaction of
successive blade rows is to be taken into account. Figure 2.7.7 shows the
computed three-dimensional inviscid flow in a complete steam turbine stage.~
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Grid

Figure 2.7.7 Computation of the inviscid flow through the last stage of a steam turbine. The grid
shown as well as the Mach number contours for the hub and casing sections. Reproduced with
permission from Denton, 1985. The original version of this material was first published in AGARD
LS-140, published in May 1985 by the Advisory Group for Aerospace Research and Development,

North Atlantic Treaty Organization (AGARDfNA TO)

The flow is simultaneously computed in the stationary and the rotating systems
and the boundary between the rotating and non-rotating blade rows is
artificially assumed to have uniform flow_conditions defined by pitchwise
averaged flow quantities. This allows a realistic computation whereby the
boundary conditions are imposed at the rotor exit only, while the pressure
between the two blade rows results from the computation. This is a rather
complex flow, with tip Mach numbers up to 1.9, and the computation allows
the determination of essential aspects of the influence of three-dimensional
geometry and of inviscid interaction between the two blade rows.
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2.8 STEADY INVISCID ROTATIONAL FLOWS-CLEBSCH
REYRESEN'IA.'I\ON

An alternative, general representation 01 )nv)sc)o, rotanona) 'ilows can De
defined, leading in many cases to a most economical description in terms of the
number of flow variables. The absolute vorticity of a frictionless flow in a
rotating, relative frame of reference is generated by the gradients of entropy.
and total energy. This is best seen from equations (2.6.14), which become, in

the absence of friction forces,

op -+ -+

-+ V.(pw)=O
ot

ow -+ -+ -+ -+-- wx r= TVs- VI
ot

(2.8.1)
~=!~
dt pot

~=O
dt

Consequently, a form of Clebsch representation can be defined for the
absolute velocity field v:

-+ -+ -+ -+

v= V<f>+~lVS+~2VI (2.8.2)

In this expression <f> is a potential function describing the irrotational flow
components and ~1 and ~2 are two additional functions describing the
magnitude of the rotational parts of the flow. Indeed, the absolute vorticity is

-+ -+ -+ -+ -+ -+ -+

r= Vx v= V~lX Vs+ V~2X VI (2.8.3)

Although the Clebsch representation (2.8.2) can be applied for time-
dependent flows (see, for instance, Serrin 1959), its usefulness for practical
applications appears mainly with stationary flows. Therefore introducing
representation (2.8.2) into the stationary momentum equation and taking into
account the stationary energy and entropy equations lead to

-+ -+ -+ -+ -+ -+ -+ -+(w. V~I)VS+(W. V~2)VI= - VI+ TVs (2.8.4)

For arbitrary and independent entropy and rothalpy gradients we obtain the



101

two equations for 1/;, and 1/;2:
... ...

(W. V)1/;, = + T (2.8.5a)
... ...

(W. V)1/;2 = -1 (2.8.5b)
,

The equations are purely convective, and require only the initial values of 1/;,

and 1/;2 in the inlet surface of the flow region. The equation for the third
function q, is obtained from the continuity equation, taking into account the
relation v = i1 + w between the relative and absolute velocities:

... ... ...'" ... ... ...

V.(pVq,)=(u. V)p- V.(p1/;,Vs+p1/;2VI) (2.8.6)

Generally, the specific mass can be expressed as a function of two
thermodynamic variables (e.g. p = p(s, h) or p = p(s, I» and the three equa-
tions (2.8.5) and (2.8.6) have to be closed by the equations for the transport of
energy and entropy:

... ...
(w. V)s = 0 (2.8.7)

... ...
(w. V)I = 0 (2.8.8)

In this representation we still have five unknown functions to solve, namely the
three velocity components, s and I.

A simplified representation can be obtained if a unique relation between s
and I exists in the inlet field, that is,

s = s(I) (2.8.9)

or

1= I(s) (2.8.10)

In this case we have

... ... (dI )... ( dS)... VI- TVs= dS- T Vs= 1- TdJ VI (2.8.11)

since relations (2.8.9) and (2.8.10) are valid in the whole flow field due to
equations (2.8.7) and (2.8.8).

Consequently, one of the 'rotational functions'1/;, and 1/;2 is not necessary,
and the three-dimensional rotational flow field can be described by

...'" ...

v=Vq,+1/;,Vs (2.8.12)
or, equivalently, by

...'" ...

v= Vq,+1/;2VI (2.8.13)

In the first representation the function 1/;, satisfies the equation

...'" dI
(w.V)1/;'=-dS+T (2.8.14)

and in the second case we have

... ... ds
(w' V)1/;2 = -1 + TdJ (2.8.15)
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It is easily seen that assumptions (2.8.9) or (2.8.10) are equivalent to the
conditions

(f. v)s=(f. V)/=O (2.8.16)
which state that the vorticity vector lies in the surfaces of constant entropy and
total energy, as can be seen by taking the scalar product of equation (2.8.3)
with Vs and VIand applying equations (2.8.9) and (2.8.10). This condition has
been shown by Cazal (1966) to be necessary and sufficient for representations
(2.8.12) or (2.8.13) to be valid.

We dispose here of a very economical representation of a rotational flow
since the three-dimensional velocity field is described by two scalar functions,
and the complete flow description requires only three equations for cp, ~l and
s, since 1 = I(s) is known from the inlet conditions. It is shown by Lacor and
Hirsch (1982) that these conditions are satisfied if either H or s are constant in
the inlet flow field or, more generally, if the inlet velocity field is uniform in at
least one of the directions transverse to the inlet velocity.

An alternative representation to equations (2.8.12) and (2.8.13) can be
defined by

-+ -+ -+

V = Vcp + SV~l (2.8. 12a)

or
-+ -+ -+

V = Vcp + IV~2 (2.8.13a)

In the first representation the function ~l satisfies the equation

-+ -+ dl(w. V)~l = dS - T (2.8.14a)

and in the second case

-+ -+ ds
(w. V)~2 = 1- TdJ (2.8.15a)

The Clebsch representation with reduced variables

Restrictions (2.8.9) or (2.8.10) on the inlet flow, necessary to obtain the
reduced representations (2.8.12) or (2.8.13), are not required for non-rotating
flows or for incompressible flows, as is shown next. Indeed, in these two cases
the number of independent unknowns can be reduced, through the introduc-
tion of scaled quantities (indicated by a subscript s):

ws = /I W (2.8.17)

ps = h P (2.8.18)

The continuity equation becomes
-+ -+ -+

v.(Psws)=p(w. V)/lh (2.8.19)
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If the scaling functions iI, h depend only on quantities purely convected by
the flow, such as entropy or rothalpy, then- -(w. V)fth = 0 (2.8.20)

and the scaled density and velocity fields will satisfy the continuity equation- -V . (Ps ws) = 0 (2.8.21)

The scaled vorticity is defined by- - -
"fs = V x Vs (2.8.22)

and if ft is chosen as a function of entropy only, the momentum equation for
the scaled flow variables can be written as (Hirsch and Lacor, 1983)( T'~ "'-2 - -)- - - 2 JI V u. v - 2

wsx "fs= V(Ifl)- I+2(dfJds)-T+T Vfl (2.8.23)

A particular choice for ft and h, in the case of a perfect gas, is given by Yih
(1965):

11 = e-sl2cp (2.8.24)

and

1h = eslcp = 7f (2.8.25)

This leads to the following momentum equation, when introduced into
equation (2.8.23), taking into account the relation (1.5.22) between I and H:

Ws x ts = V(Ie-SICp) + l(u. u)Ve-slcp (2.8.26)

Representation (2.8.2) for the velocity field can be reduced to the simplified
forms (2.8.12) or (2.8.13) if only one gradient appears in the right-hand side of
the above equation. This will be the case for a non-rotating system where
u = O. As shown by Hawthorne (1974), there is no choice of ft which could
remove one of the two gradients appearing in this equation for a general
rotating flow unless some restrictions are imposed on the inlet flow field, as
discussed in the previous section.

Non-rotating system

For a non-rotating flow, u = 0 and the momentum equation (2.8.26) becomes,
with equation (2.1.27),

Us x ts = V(He-SICp) = ~ Vp~"Y-I)/"y (2.8.27)
PoA

for a perfect gas of specific heat ratio 'Y, where Po is the stagnation pressure
and where the subscript A indicates references values. Since the right-hand side
of this equation contains only one gradient, the following representation for
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Figure 2.8.1 Inlet velocity distribution to the turbine passage. (a) Turbine passage
geometry with part of the mesh; (b) inlet velocity distribution at hub and shroud

walls
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Figure 2.8.2 Isopressure contours at cross-sections I and II compared with experimental data
from Sieverding (1982). (a) Section I; (b) section II. (From Lacor and Hirsch, 1984; Hirsch and

Lacor. 1985)
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the reduced velocity can be applied:
-. -. -.
Us = V<f> + 1/IVpo (2.8.28)

The two scalar functions <f> and 1/1 satisfy the following equations, derived
from equations (2.8.21) and (2.8.27):

V' (Ps V<f» = - V' (Ps1/lVPo) (2.8.29)

1 ~ )-I/Y (vs' V)1/I = - - ~ (2.8.30)

POA OA

together with
-. -.

(us' V)po = 0 (2.8.31)
-. -.

(us'V)H=O (2.8.32)

This is a completely general formulation for steady, non-rotating, inviscid
rotational flows allowing a description with the aid of two scalar functions for
the three scalar velocity components. Obviously choice (2.8.24) for the scaling
function 11 is not unique and many other choices are open. For instance, /I
could also be chosen as a function of H only.

Incompressible fluid

For incompressible flows the scaling is actually not necessary since equation
(1.4.7) reduces, with the continuity equations for incompressible flows,

-. -.V . w = 0 (2.8.33)

to the momentum equation

-. -.1-.*w x r = - V P (2.8.34)
P

where
p* = p +! p(W2 - ;;2) (2.8.35)

is often called the rotary stagnation pressure. Obviously,

(w' V)p* = 0 (2.8.36)

and the following representation can be defined:

v=V<f>+1/IVP* (2.8.37)

The equations
.;1<f> = - V' (1/IVP*) (2.8.38)

-. -. 1(w' V)1/I = - - (2.8.39)
P
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together with equation (2.8.36) form the complete set of equations for the
three-dimensional, steady, inviscid, incompressible flow in a steadily rotating
system. This flow system is therefore completely determined by the knowledge
of the three scalar functions cp, 1/1 and p*.

The above representations of three-dimensional stationary, rotational,
inviscid flows have been applied by Lacor and Hirsch (1980, 1982), Chang and
Adamczyck (1983) and Chaviaropoulos et al. (1986) to various internal flow
problems. Ecer and Akay (1983) have applied representation (2.8.12) to
two-dimensional, transonic potential flows in order to add non-isentropic
contributions in the presence of shock discontinuities.

Practical example

Three-dimensional flow in a turbine passage In turbine passages the influence
of viscous boundary layers remains limited, and the above model provides an
acceptable prediction of the secondary flows generated from non-uniform
velocity profiles at inlet. Figure 2.8.1 displays the inlet velocity distribution to
the turbine geometry shown in the same figure. The rotation of the isopressure
surfaces due to the secondary flow can be seen from Figure 2.8.2 in two
cross-sections, indicated I and II. The comparison with the experimental data
shows a good correspondence with the calculated pressure field.
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2.9 THE POTENTIAL FLOW MODEL

The most impressive simplification of the mathematical description of a flow
system is obtained with the approximation of a non-viscous, irrotational flow.

From
-+ -+ -+r = V x v = 0 (2.9.1)

the three-dimensional velocity field can be described by a single scalar
potential function, cf>, defined by

-+ -+
V = Vcf> (2.9.2)

reducing the knowledge of the three velocity components to the determination
of a single potential function cf>.

As seen from the preceding section, if the initial conditions are compatible
with a uniform entropy, then for continuous flows, equation (2.8.1) implies
that the entropy is constant over the whole flow field. Hence for isentropic
flows the momentum equation becomes

~ (Vcf» + VH= 0 (2.9.3)

or

~ + H = constant = Ho (2.9.4)

the constant Ho having the same value along all the streamlines.
This equation shows that the energy equation is no longer independent of

the momentum equation, and therefore the flow will be completely determined
by initial and boundary conditions, on the one hand, and by the knowledge of
the single function cf> on the other. This is a very considerable simplification
indeed.

The equation for the potential function is obtained from the continuity
equation, taking into account the isentropic conditions to express the density
as a function of velocity and hence of the gradient of the potential function.
We obtain the basic potential equation in conservation form:

~ + V. (p Vcf» = 0 (2.9.5)
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and the relation between density and potential function is obtained by
introducing the definition of stagnation enthalpy as a function of velocity and
static enthalpy h, for a perfect gas:

P (h)I/('Y-l) [( fj2act» ] 1/('Y-l)
-= - = Ho IhA (2.9.6)
PA hA 2 at

The subscript A refers to an arbitrary reference state; for instance, the
stagnation conditions PA = Po and hA = Ho.

Steady potential flows

A further simplification is obtained for steady potential flows. With
',,'

H = Ho = constant the potential equation reduces to

v,(Pvct»=O (2.9.7)

with the density given by equation (2.9.6), where hA can be chosen equal to Ho.
Hence we have

P ( (Vct»2)1/('Y-l) -= 1-- (2.9.8)

Po 2Ho

where Po is the stagnation density, constant throughout the whole flow field.
Both for steady and unsteady flows the boundary condition along a solid

boundary is the condition of vanishing relative velocity between flow and solid
boundary in the direction n normal to the solid wall:

act> -- --
Vn=a;= UW' In (2.9.9)

where uw is the velocity of the solid boundary with respect to the system of
reference being considered.

2.9.1 Irrotational flow with circulation-Kutta-Joukowski condition

Although the local vorticity in the flow is zero for a potential flow, in
non-simply connected domains it may happen that the circulation around a
closed curve C becomes non-zero. This is essentially the case for lifting
airfoils. To achieve a non-zero lift on the body a circulation r around the
airfoil is imposed. This circulation is represented by a free vortex singularity,
although it originates from a vorticity production physically generated in the
boundary layer. It follows that the value of r cannot be determined from
irrotational theory and is an externally given value for a potential flow. It is
also to be remembered that, with the addition of the free vortex singularity r,
an infinity of different potential flows can be obtained for the same incident
flow conditions, each of these solutions having another value of r. However,
for aerodynamically shaped bodies such as airfoil profiles a fairly good
approximation of the circulation, and hence the lift, may be obtained by the
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Figure 2.9.1 Potential jump over the cut C associated with a
circulation

Kutta-Joukowski condition, provided that no boundary layer separation
occurs in the physical flow. The Kutta-Joukowski condition states that the
value of the circulation which approximates best to the real (viscous) unsepar-
ated flow is obtained if the stagnation point at the downstream end of the body
is located at the trailing edge.

The non-zero circulation around the body requires the introduction of an
artificial boundary or cut (C), emanating from the body to the far field
boundary (Figure 2.9.1) and over which a jump in the potential function is
allowed. Calculating the circulation around the body for an arbitrary curve
starting at a point A - on the cut and ending in the corresponding point A + on

the opposite side yields

r = %- I7d/= %- vq,. d/= q,(A+) - q,(A -) (2.9.10)
j A-A+ j A-A+

which is non-zero due to the circulation r. Since the potential jump is constant
in each point of the cut the circulation for any closed curve not surrounding
the body remains zero even when crossing the cut. Hence the flow remains
irrotational. To satisfy mass conservation over the cut it is sufficient to require
continuity of the normal derivatives of the potential, since all flow variables,
particularly the density p, depend only on velocity 17 and inlet stagnation
conditions. Thus the cut can be interpreted as a periodic boundary with
conditions, for any point on the cut C,

q,(A+) =q,(A-)+r
aq, aq, (2.9.11)- (A + ) = - (A - )

an an

where n is the direction normal to the cut.

2.9.2 The limitations of the potential flow model for transonic flows

If we consider the steady-state potential model for continuous flows the
constancy of entropy and total enthalpy, coupled to irrotationality, form a set
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of conditions fully consistent with the system of Euler equations. Hence the
model defined by

s = So = constant
(2.9.12)

H = Ho = constant

and ii = V<f> or V x ii = 0, where <f> is solution of the mass conservation
equation, ensures that the momentum and energy conservation laws are also
satisfied. Therefore it can be considered that an inviscid continuous flow, with
initial conditions satisfying the above conditions (2.9.12), will be exactly
described by the potential flow model.

However, in the presence of discontinuities such as shock waves this will no
longer be the case since, as shown in Section 2.7, the Rankine-Hugoniot
relations lead to an entropy increase through a shock. If the shock intensity is
uniform then the entropy will remain uniform downstream of the shock but at
a value other thalJ the initial constant value. In this case, according to equation
(2.7.5) the flow remains irrotational. However, if the shock intensity is not
constant, which is most likely to occur in practice (for instance, for curved
shocks), then equation (2.7.5) shows that the flow is no longer irrotational and
hence the mere existence of a potential downstream of the discontinuity cannot
be justified rigorously. Therefore the potential flow model in the presence of
shock discontinuities cannot be made fully compatible with the system of
Euler equations, since the potential model implies a constant entropy and has
therefore no mechanisms to generate entropy variations over discontinuities.
As will be seen next, the potential model allows shock discontinuities but with
isentropic jump relations and, hence, the isentropic potential shocks will not
satisfy all the Rankine-Hugoniot relations (2.7.14) or (2.7.15).

Potential shock relations

The irrotationality condition (2.9.2) can be integrated over the line segment
An of Figure 2.7.1, leading to

r iiodl=<f>B-<f>A (2.9.13)
JAB

where d 1 is the line element tangent to AB. Taking the limit for the distance
going to zero, we obtain the jump condition

[<f>] =0 (2.9.14)
where the square brackets indicate the variation [<f>] = <f>B - <f>A over the

discontinuity. This relation states that the potential function remains continu-
ous over a shock discontinuity.

Applying the same integration procedure over the closed contour ABCD of
Figure 2.7.1 and expressing that no circulation is generated at the discontinuity
surface E, we obtain

! V<f>odl=o (2.9.15)
j ABCD
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For the limits AB and CD tending to zero equation (2.9.15), together with
equation (2.9.14), becomes, where h is the unit vector along AD,

[vt/>. h] = [v' h] = 0 (2.9.16)

expressing the continuity of the tangential velocity component at the dis-
continuity surface E. This is in agreement with the second equation (2.7 .15b)
projected in the tangential direction h.

Finally, the potential equation (2.9.7), expressing mass conservation, can be
treated as in Section 2.7, leading to

[pvt/>.ln]=o (2.9.17)

which is the first of the Rankine- Hugoniot relations (2.7 .15a) for a steady
shock.

The third Rankine-Hugoniot relation (2.7 .15c) expresses the conservation
of energy and hence is satisfied by the potential model, which assumes that the
total energy is constant throughout the whole flow field. However, since the
entropy is considered as constant everywhere in the potential model, and hence
also over the discontinuity, this conflicts with equations (2.7.15) and, in
particular, the normal projection of the momentum conservation equation

(2.7.15b):
[PVn'Vn+P]=O

will not be satisfied by the potential flows. Hence the isentropic potential
model satisfies conservation of mass and energy but does not satisfy
momentum conservation over a shock discontinuity. Actually, the difference
in the momentum [pv~ + p] is used to estimate the drag due to the shock wave
(Steger and Baldwin, 1972; see also Yu et al., 1983, for a recent discussion on
the numerical aspects connected with the inviscid drag computation).

Comparison between isentropic and Rankine-Hugoniot shock relations

The differences between the exact shock relations given by the Rankine-
Hugoniot equations (2.7.15) and the isentropic shock relations implied by the
potential flow model can best be illustrated for a one-dimensional normal
shock (Figure 2.9.2). The exact normal shock relations (2.7.15) applied to the
case of Figure 2.9.2 can be found in many textbooks (see, for instance,
Shapiro, 1953; Zucrow and Hoffman, 1976).

The entropy increase over the normal shock, defined by equation (2.1.17),

~=~=ln~ (2.9.18)
Cv Cv PI/PI

can be expanded as a function of the upstream Mach number Mias follows
(Zucrow and Hoffman, 1976):

~ = ~ ~ (Mt - 1)3 + O[(Mt - 1)4] (2.9.19)
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Figure 2.9.2 Normal shock configuration

Hence for sufficiently low supersonic upstream velocities the entropy increase
will rema~n low and the irreversibility of the shock can be ignored.

A quantitative estimate of the error introduced by the isentropic shocks can
be obtained from the computation of the stagnation pressure variations over
the shock. From equation (2.1.25) and the energy conservation over the shock
(equation (2.7 .15c» we have

~= -In (~
) (2.9.20)

r POI

with

~ = { [(1 + 1)/2] MT/[l + (1 - 1)/2. MT] }'Y/(y-l) (2.9.21)
PO2 [21/(1 + 1). MT - (1 - 1)/(1 + l)]I/('Y-I)

for the exact shocks while for an isentropic shock the stagnation pressure
remains constant. The total pressure loss (PO2/POI - 1) is plotted in Figure

2.9.3 as a function of MI. For MI ~ 1.25 the total pressure loss is lower than
2%. This is an acceptable error for technical applications using an inviscid
model, since for higher incoming Mach numbers the level of accuracy of the
inviscid model might become questionable due to the possible occurrence of
strong shock-boundary layer interactions. Hence for Mach numbers upstream
of the shock below a value of approximately 1.25 it might be acceptable to
consider a constant stagnation pressure and hence constant entropy even in the
presence of shocks.

Another view of the error introduced in the shock intensity by the isentropic
assumption of potential theory is obtained by comparing the values of the
Mach numbers downstream of the shock. The Rankine-Hugoniot relation for
mass conservation (2.7 .15a), leads to

,

M2 = Ml1?Q!- (2922)[1 + (1 - 1)/2 . M~](Y+ 1)/2('Y-1) [1 + (1 - 1)/2. MT]('Y+ 1)/2('Y-1) PO2 ..

where (POl/POI) is given by equation (2.9.21).
The isentropic values of the Mach number downstream of the shock, (M2 hs,

which are obtained from a potential flow calculation are derived from the same
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equation (2.9.22) when the isentropic shock relation (Pot/Poz) = I is intro-
duced. These relations are plotted in Figure 2.9.4. For M, = 1.25 an error of

~Mz = !~t~-~ ~ 0.03

is made, and it is to the user to decide, as a function of the overall level of
accuracy required, if this is acceptable or not.

However, next to the error in the shock intensity, the isentropicity of the
potential model also leads to shock positions which can be incorrectly located
when compared with inviscid computations from Euler models. This can be
seen in Figures 2.9.5 and 2.9.6 for a flow on a NACA 0012 airfoil at incident
Mach number of M~ = 0.86 with 0° incidence and at M~ = 0.8 with 0.50

incidence.
This large error in shock position and hence on lift is a severe problem for

potential flow models in the presence of shocks. An approximate cure to this
problem can be achieved by the introduction of non-isentropic corrections to
the basic potential model. An example (Klopfer and Nixon, 1983) illustrates
the effect of these corrections for a computation on the same NACA 0012
airfoil at M~ = 0.8 and 1.250 incidence (Figure 2.9.7). More details will be
given in the corresponding chapter of Volume 2, dealing with the comput-
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Figure 2.9.6 Surface pressure distribution along a NACA 0012 airfoil at incident Mach number
M~ = 0.80 and 0.50 incidence. (a) Computed with a potential flow model; (b) computed with an

Euler flow model. (Courtesy A. Jameson. Princeton University, USA)
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Figure 2.9.7 Surface pressure distribution around a NACA
0012 airfoil at M~ = 0.80 and 1.25° incidence, obtained by a
potential model plus non-isentropic corrections. (Reproduced

by permission of AIAA from Klopfer and Nixon, 1983.)

ational techniques for potential flows. However, the potential model remains
an excellent approximation for inviscid flows, fully equivalent to the Euler
model for irrotational conditions in the absence of shock discontinuities. This
is illustrated by the following examples.

Supercritical airfoils

The development of supercritica1 airfoils, defined as having a shock-free
transition from supersonic to subsonic surface velocities, is one of the most
spectacular outcomes of the early developments of computational fluid
dynamics. These airfoils are now of general use on civil aircrafts, allowing
important savings on fuel costs due to the absence of the pressure drag
produced by a shock. They are also being applied in axial flow compressors
under the name of controlled diffusion blades.

Figure 2.9.8 shows the surface pressure distribution on the so-called Korn
airfoil (Bauer et al., 1975) and the isoMach lines for the design conditions of
M~ = 0.75 and 0° incidence. The design conditions for shock-free transition
represent a singular point, since the smallest perturbation will lead to the
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Langley Research Center, USA)
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appearance of shocks. This is best illustrated by a calculation on the same
airfoil with 0.5° incidence instead of the design value of 0°, the results of
which are displayed in Figure 2.9.9. The strong shock can be noted as well as
the sharp increase in pressur~ drag coefficient (from 0 to 0.108). These
calculations were performed by C. Gumbert of NASA Langley Research
Center with a very fine mesh of 284 x 64 points.

Subsonic potential flows

In the subsonic range the potential model has the same validity as the Euler
model for uniform inflow conditions on a body since the flow remains
,!rrotational in this case. An example is shown in Figure 2.9.10, where the
inviscid potential flow through a compressor cascade of controlled diffusion
blades is compared with experimental data, demonstrating excellent corres-
pondence. Flow inlet conditions correspond to an incident Mach number of
0.22 and an inlet flow angle of 28°. The coarse mesh used in this computation
by Schulz et al. (1984) is also shown, together with the isoMach contours.

2.9.3 The non-uniqueness of transonic potential models

The isentropic restriction of potential models in transonic flows has still
another limitation, which can be very severe in certain cases of external flows
as well as for internal transonic flows in channels, nozzles and cascades.

Non-uniqueness in internal flows

The limitations in transonic internal flows are linked with the existence of an
infinite number of equally valid solutions for the same isentropic outlet
physical variables such as back pressure or outlet Mach number.* This is best
illustrated on a one-dimensional channel or nozzle problem. Considering a
nozzle with \ .irying cross-section S(x), it is well known that, according to the
level of the outlet pressure and for given inlet conditions, the flow can be either
supersonic or subsonic. The mass flow per unit area

(~) = pu (2.9.23)

can be expressed as a function of Mach number by

~ J Mpu = pO,j(yrTo) [1 + (y - 1)/2. M1(7+ 1)/2(7-1)

(2.9.24)
= poJ~F(M)

. The non-uniqueness discussed here is the one remaining when tJle necessary precautions (entropy

conditions) have been taken to remove the possible expansion shocks.
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cascade of controlled diffusion blades (a) Mesh and computational domain; (b) pressure
distribution compared with experimental data (Reproduced by permission of the Department

of the Navy from Schulz et 01., 1984.)
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which is based on the isentropic assumption. A study of this function (Figure
2.9.11) shows that it attains an absolute maximum for M= 1, corresponding
to the maximum mass flow the nozzle can allow for the given stagnation
conditions Po, To, the choking mass flow. For lower values of F(M) < F(1)
there are two solutions, of which one is subsonic and the other supersonic.
Actually, the isentropic jump relation (equation (2.9.22» with POl = POI is
given precisely by F(Ml) = F(Mz). For subsonic inlet conditions the flow will
accelerate to the throat and, if the outlet pressure is sufficiently high, will
decelerate in the divergent part. When the outlet pressure is reduced sonic
conditions will be reached in the throat and, depending on the outlet pressure,
the flow can become supersonic in the divergent section (branch (A) of Figure
2.9.12) or remain subsonic and decelerate (branch (B) of Figure 2.9.12). In the
first case a shock can occur which will bring the flow conditions from the
supersonic branch (A) to the subsonic branch (B).

Due to the isentropic restriction all the different shock positions between the
isentropic branches (A) and (B) will have the same outlet conditions MB and
corresponding pressure PH. Therefore fixing the value of MB (or PH) will not
determine uniquely the position of the shock of the transonic solution. This is
a consequence of the fact that in the isentropic world there is no mechanism
which connects the shock position to the outlet conditions. In the inviscid
world governed by the Euler equations and the Rankine-Hugoniot shock
relations, the two shocks of Figure 2.9.12 have different intensities and hence
different entropy variations. Therefore they will correspond to different outlet
pressures (or Mach numbers) and hence the physical outlet conditions.uniquely
determine the shock position. This is not the case for the isentropic potential
model, and the same outlet value will allow an infinity of solutions with
different shock positions and intensities defined by the jump between the two

0.6

0.4
~
i;::

0.2

0.0
I

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Mach number

Figure 2.9.11 Mass flow per unit area
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Figure 2.9.12 Shock transitions for Euler and potential flows

branches (A) and (B) of Figure 2.9.12. For instance, potential shocks 1 and 2
correspond to the same outlet Mach number MB.

This non-uniqueness of the isentropic potential flow for given physical
boundary conditions can be removed by a condition on the potential difference
between inlet and outlet (Deconinck and Hirsch, 1983). Considering a model
problem defined by a channel of constant section with uniform supersonic inlet
velocity, a trivial solution is given by the uniform supersonic flow in the entire
channel with Mach number equal to the inflow value. However, as seen in
Figure 2.9.12, the same mass flow can also be passed with subsonic velocity.

More insight into the distinction between the different solutions is obtained
by considering the variations of the potential Ip as a function of distance,
instead of the physical variables which are determined by the gradients of Ip.
Since the velocities are constant, the variations of Ip with distance are linear
with different slopes for the supersonic and subsonic branches (Figure 2.9.13).
At the shock location the slope of the potential function changes and a unique
exit value, IPE, is obtained for each shock position. Therefore the value of the
potential difference between inlet and exit will uniquely determine the shock
position.

",>1 I I 1"2<'

I Shock i: I Supersonic solution
I I
I I

<I> r I
I <l>E
I

Subsonic solution
I

X

Figure 2.9.13 Potential function variation for different shock
positions
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If a streamline is followed from inlet to outlet the potential difference
(cPout - cPin) fixes the circulation along the flow path according to equation
(2.9.13), and therefore the circulation along the streamline completely
determines the shock location.

Figure 2.9.14 shows the variety of solutions obtained in a channel flow for
the same inlet and outlet physical conditions (from Deconinck, 1983). The
three flow configurations shown in this figure have the same inlet and outlet
isentropic Mach numbers of M~=O.85, but represent three different, but
equally valid, potential flow solutions. However, compared with the exact
inviscid Euler flow, the isentropic potential flow with the same shock position
will not have the same exit pressure, or if the two flows have the same outlet
parameters they will lead to different shock locations and intensities.

Non-uniqueness in external flows

A different non-uniqueness of the isentropic potential equation has been
observed for external flows along airfoils. In a series of extremely careful
computations Steinhoff and Jameson (1982) discovered multiple-flow con-
figurations with different shock positions, for the same physical boundary
conditions of incident flow angles and Mach numbers. Those unexpected and
surprising results were further analysed by Salas et al. (1983, 1985).

This non-uniqueness has also been observed by Glowinski et al. (1984) with
a finite element potential method based on a completely different numerical
approach. Therefore there seems to be no doubt that the numerically observed
non-uniqueness indeed corresponds to multiple solutions of the isentropic
potential equation. For certain regions of incident Mach numbers, three or
more different isentropic solutions, corresponding to different values of the
circulation around the airfoil, were obtained for the same incident angle.

Figure 2.9.15 illustrates the computed non-unique solutions around a
two-dimensional symmetrical NACA 0012 airfoil. A symmetrical (zero lift)
arid a non-symmetrical solution are found at zero incidence. In addition, as
can be seen from the lift incidence curve in Figure 2.9.16, within the range of
Mach numbers where non-unique solutions are found three different flow
configurations are possible for the same incidence angle. Also in Figure 2.9.16
results from a full Euler model are shown, indicating no presence of
non-unique, non-physical solutions. Note that in the non-uniqueness region
none of the solutions has a physical significance, since the lift incidence angle
curve has not the correct, physical slope.

The authors selected a given potential solution by fixing the circulation and
iteratively allowing the incidence angle to adapt in order to satisfy the
Kutta-Joukowski condition at the trailing edge. In this way the shock
conditions are uniquely determined, in agreement with the approach for
internal flows mentioned above. Note that within the same conditions non-
isentropic computations of the same flows, by solutions of the Euler equations
(or even by a non-conservative potential model) did produce unique solutions
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Figure 2.9.15 Non-unique solutions of the conservative potential
flow models for a symmetrical NACA 0012 airfoil. (Reproduced by

permission of AIAA from Steinhoff and Jameson, 1982)

for all incident flow conditions. More systematic computations (Salas and
Gumbert 1985) seem to indicate that a non-uniqueness region of incidence
angles exists for all supercritical values of Mach numbers for a given airfoil.
This raises an uncertainty with respect to transonic isentropic potential flow
models.

2.9.4 The small-disturbance approximation of the potential equation

In steady or unsteady transonic flow around wings and airfoils with thickness
to chord ratios of a few per cent we can generally consider that the flow is
predominantly directed along the chord wise direction, taken as the x-direc-
tion. In this case the velocities in the transverse direction can be neglected and
the potential equation reduces to the so-called small-disturbance potential
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Figure 2.9.16 Computed variation of lift coefficient with inci-
dence angle in the region of non-unique solutions for the
potential flow around a NACA 0012 airfoil at M~ = 0.83. For

comparison, the results from an Euler calculation are
indicated. (Courtesy M. Salas, NASA Langley R~earch

Center, USA)

equation:

1(1 - Mt.,)cPxx + cPyy + cpzz = 2 (cPtt + 2cPxcPxt) (2.9.25)
a

Historically, the steady-state, two-dimensional form of this equation was used

by Murman and Cole (1971) to obtain the first numerical solution for a

transonic flow around an airfoil with shocks.

2.9.5 Linearized potential flows-singularity methods

If the flow can be considered as incompressible the potential equation becomes

a linear Laplace equation for which many standard solution techniques exist.

One of these, based on the linearity of the equation, is the singularity method,

whereby a linear superposition of known elementary flow fields such as vortex

and source singularities are defined. The unknown coefficients of this linear

superposition are obtained by stipulating that the resultant velocity field
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satisfies the condition of vanishing normal velocity along solid body surfaces
(in the absence of wall suction or blowing).

The three-dimensional extension of the singularity method (the panel
method) has been widely used in the aeronautical industry in order to compute
the three-dimensional flow field around complex configurations. The method
is still in use and, although extensions to handle compressibility and transonic
regimes can be developed, these methods are best replaced, for high-speed
flows, by higher approximations such as the non-linear potential model and
the Euler equations for the inviscid flow description. We will therefore omit
any detailed discussion of this approach as the reader will find this information
in the specialized literature.

2.10 SUMMARY

Different flow models, involving various degrees of approximation, have been
defined and illustrated by a variety of examples. With the exc~ption of laminar
flows, which can be resolved by the Navier-Stokes model with the addition of
empirical information on the dependence of viscosity and heat conductivity
coefficients, all other models are limited by either empirical knowledge about

Moo = 0.82 a = 2°

-1.2 ,
I

---l-0. 0 . t.. .
a. .

1.5 . . 0
i -0
Q)u
~ I"
0
u

Q) 0
:; 0.2 0.4 06
'"
'"

~ Fraction chord,x/C
Q. .

04 0 Test data

-- - Small disturbance solution (XTRAN2L)
-- Full potential solution (TAIR)

08 - Euler solution

Figure 2.10.1 Comparison of calculations with small disturbance.!
potential Euler models for the NACA 0012 airfoil at M~ = 0.82 and 2
incidence and experimental data. (Courtesy A. Verhoff, McDonnell

Aircraft Co., USA)
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turbulence, as for the Reynolds-averaged Navier-Stokes equations, or by
some approximations. Thin shear layer models are valid if no severe viscous
separated regions exist and, similarly, the parabolized Navier-Stokes models

: for stationary formulations are limited by the presence of stream wise separa-
tion.

lnviscid flow models provide a valid approximation far from solid walls
, or when the influence of boundary layers can be neglected and, although the

isentropic potential flow model is of questionable accuracy in transonic flows
with shocks, it remains a valid and economical model for subsonic and

NAVIER-STOKES EQUATIONS

- Coupled system of five non -linear differential
equations of second order, in space and time

- Describe conservation of mass, momentum and

energy

- Describe wave propagation phenomena damped by

viscosity

r Viscous effects negligible>

EULER EQUATIONS

- Coupled system of five non-linear differential
equations of first order, in space and time

- Describe conservation of mass, momentum and

energy

- Describe wave propagation (convective)
phenomena

l Isentropic, irrotatianal flOWS>

POTENTIAL EQUATIONS

- SINGLE second-order non-linear differential
equation

- Describe conservation of mass and energy

- Momentum conservation not fully satisfied
in presence of shocks

Figure 2.10.2 Classification of various flow models
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shock-free supercritical flows. In addition, the introduction of non-isentropic
corrections will lead to shock predictions close to those obtained with Euler
models.

This should be kept in mind in the selection of a flow model, and the limits
of validity have to be established for each family of applications by com-
parison with experimental data or with computations from a higher-level
model. For instance, Figure 2.10.1 shows that for the flow on a NACA 0012
airfoil at 2° incidence viscous corrections are required to fit the experimental
data, while this requirement is not so severe for the examples shown in Figures
2.7.4,2.7.9 or 2.9.10. Figure 2.10.2 summarizes the interrelation between the
various models in decreasing order of complexity.

References

Barton, J. T., and Pulliam, T. H. (1984). 'Airfoil computation at high angles of attack,
inviscid and viscous phenomena.' AIAA Paper 84-0524, AIAA 22nd Aerospace
Sciences Meeting.

Bauer, F., Garabedian, P., Korn, D., and Jameson, A. (1975). Supercritical Wing
Sections II, Lecture Notes in Physics, Vol. 108, New York: Springer Verlag.

Deconinck, H. (1983). 'The numerical computation of transonic potential flows.' PhD
Thesis, Vrije Universiteit Brussel, Dept of Fluid Mechanics, Brussels, Belgium.

Deconinck, H., and Hirsch, Ch. (1983). 'Boundary conditions for the potential
equation in transonic internal flow calculations.' Paper ASME-83-GT-135, 26th
International ASME Gas Turbine Conference.

Flores, J., Barton, J., Holst, T., and Pulliam, T. (1985). 'Comparison of the full
potential and Euler formulations for computing transonic airfoil flows.' Proc. 9th
Int. Con/. on Numerical Methods in Fluid Dynamics, Lecture Notes in Physics, Vol.
218, Berlin: Springer Verlag.

Fujii, K., and Obayashi, S. (1985). 'Evaluation of Euler and Navier-Stokes solutions
for leading edge and shock-induced separation.' AIAA Paper 85-1563, AIAA 18th
Fluid Dynamics, Plasmadynamics and Lasers Conference.

Klopfer, G. H., and Nixon, D. (1983). 'Non isentropic potential formulation for
transonic flows.' AIAA Paper 83-0375, AIAA 21st Aerospace Sciences Meeting,
Reno.

Murman, E. M., and Cole, J. D. (1971). 'Calculation of plane steady transonic flows'.
AIAA Journal, 9, 114-21.

Salas, M. D., Jameson, A., and Melnik, R. E. (1983). 'A comparative study of the
non-uniqueness problem of the potential equation.' AIAA Paper 83-1888, Proc.
AIAA 6th Computational Fluid Dynamics Con/., pp. 48-60.

Salas, M. D., and Gumbert, C. R. (1985). 'Breakdown of the conservative potential
equation.' AIAA Paper 85-0367, AIAA 23rd Aerospace Sciences Meeting.

Schulz, H. D., Neuhoff, F., Hirsch, Ch., and Shreeve, R. P (1984). 'Application of
finite element code Q3DFLO-81 to turbomachinery flow fields.' Naval Postgraduate
School Technical Report NPS67-84-005PR, December 1987.

Shapiro, A. H. (1953). 'The dynamics and thermodynamics 0/ compressible fluid flow'.
New York: Ronald Press.

Steger, J. L., and Baldwin, B. S. (1972). 'Shock waves and drag in the numerical
calculation of isentropic transonic flow.' NASA TN-D-6997.

Steinhoff, J., and Jameson, A. (1982). 'Multiple solutions of the transonic potential
flow equation. AIAA Journal, 20, 1521-5.



131

Yu, N. J., Chen, H. C., Samant, A. A., and Rubbert, P. E. (1983). 'Inviscid drag
calculations for transonic flows.' AIAA Paper 83-1928, Proc. AIAA 6th Computa-
tional Fluid Dynamics Conference, pp. 283-92.

Zucrow, M. J., and Hoffman, J. D. (1976). Gas Dynamics, New York: John Wiley.

PROBLEMS

Problem 2.1

By developing explicitly the shear stress gradient and the momentum terms derive
equations (2.1.7).

Problem 2.2

By using the definition of the shear stress tensor (equation (1.3.2» work out the full,
explicit form of the Navier-Stokes equations for non-constant viscosity coefficients, as
a function of velocity components, in Cartesian co-ordinates. Show also that in the case
of constant viscosity the equations reduce to the projections of equation (1.3.9).
Hint: Applying equation (1.3.2) we have, in condensed derivative notation,

Txx = ~ p.(axu) - ~ p.(ayv + azw)

'Txy = p.(axv + ayu)

Txz = p.(axw + azu)

and the x-projection of the momentum equation becomes

a a a a a a a- (pu) + - (pU2 + p) + - (puv) + - (puw) = - Txx + - Txy + - Txz
at ax ay az ax ay az

Problem 2.3

Derive the energy conservation equation for a three-dimensional incompressible flow in
the presence of gravity forces.
Hint: Apply equation (1.3.13) to the momentum equation (2.1.29) and multiply
scalarly by iJ. Introducing the total energy H = pIp + iJ2/2 + gz, where z is the vertical
co-ordinate, proof the Bernoulli equation:

a -2v - - H - ---+(v' V) = JlV. ~v
at 2

Problem 2.4

Proof equations (2.3.5)-(2.3.7)

Problem 2.5

Obtain the momentum equation for the z-component of the velocity, w, in the
parabolized Navier-Stokes approximation, following the lines leading to equation
(2.4.7) for the y-component v.

Problem 2.6

Obtain a Poisson equation for the pressure by taking the divergence of the 'par-
abolized' momentum equations (2.4.6) and (2.4.7) and the similar equation for w,
taking the compressibility into account.
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Problem 2.7

Write the equations for the distributed loss model (Section 2.6) in conservative,
time-dependent form.

Problem 2.8

Proof equation (2.7.7) by expressing that the volume dO remains unchanged in the
translation with speed C.
Hint: Referring to Figure 2.7.1, the two sides AD and BC of the control volume ABCD
have the same displacement velocity, hence d(dO)/dt = O.

Problem 2.9

Proof equation (2.8.23).
Hint: Calculate explicitly the scaled vorticity t s; replace the entropy gradient by
Vs = dsld/l . V /I and take into account that fact that W' V /I = 0 because of equation
(2.8.7). Show also, for choice (2.8.24), that /I . dsld/l = - 2cp.

Problem 2.10

Proof equations (2.8.27) and (2.8.30):

Problem 2.11
Show that a non-rotating system, the representation r7 = VItI + Po . VIt- is equivalent to

representation (2.8.28).
Hint: Obtain the relation

- - 1 ~Po~ -l/'Y" I
VS' Vlt-=- - =-

POA 0 Po

Problem 2.12

By working out explicitly the gradients of specific mass as a function of the velocities,
show that the potential equation can be written in the quasi-linear form as a function of
the Mach numbers Mi = viI c:

021j1 1 [021j1 0 - 2
](oij-MiMj)-=- -+-(VIjI)

0 XiO Xj C2 of ot
with a summation on the Cartesian subscripts i, j = 1,2,3 or x, y, z. Show that in two
dimensions the potential equation reduces to .

(I-~ )~-~~+ (I-~ )~~O
C2 OX2 C2 oxoy C2 oy2

Hint: Apply the isentropic laws and the energy equation (2.9.4) to derive

dh = C2 dplp

~~- -'~~!~p ot - of ot 2

~Vp=-~-~p ot 2
where c is the speed of sound, and substitute into equation (2.9.5).



Chapter 3

The mathematical nature of the flow
equations and their boundary
conditions

3.1 INTRODUCTION

The mathematical models of the various approximations defined in the
previous chapters can all be classified as first-order or, at most, second-order
systems of quasi-linear partial differential equations. Their mathematical
properties are directly connected to the physical properties of the flow. As
discussed in Chapter 1, any flow configuration is the outcome of a balance
between the effects of convective fluxes, diffusive fluxes and the external or
internal sources. The various approximation levels which have been defined
can be considered as resulting from a priori estimates of the relative influence
and balance between the contributions of these various fluxes and sources.

From a mathematical point of view, the diffusive fluxes appear through
second-order derivative terms as a consequence of the,~eneralized Fick's law,
equation (1.1.6), which expresses the essence of the molecular diffusion
phenomenon as a tendency to smooth out gradients. The convective fluxes, on
the other hand, appear as first-order derivative terms and express the transport
properties of a flow system. Therefore each of these contributions will
influence the mathematical nature of the equations, particularly the competi-
tion between the elliptic, parabolic and hyperbolic character of the systems of
equations describing the approximation level being considered.

Before presenting a more rigorous mathematical description it might be
useful to illustrate these connections in a more straightforward way. Consider
one projection of the Navier-Stokes equations, ~ay the x-component of the
momentum equation, in a Cartesian system and a laminar, incompressible
flow under the form

au - - "ap
P-ai+p(v. V)u= -~+p..1.u (3.1.1)

If all variables are non-dimensionalized through a reference length L for the
space co-ordinate, a time scale T for the time co-ordinate, a velocity scale Y
for the velocity field and (p y2) for the pressure, we obtain, keeping the same

i 133
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notation for all variables now considered as non-dimensionalized.

VTau - - ap 1
--+(v' V)u= --+- ~u (3.1.2)
L at ax Re

where Re is the Reynolds number, defined by

Re=~=Yf (3.1.3)
IL II

For very small values of the Reynolds number, that is, for strongly viscous
dominated flows, the convection terms can be neglected with respect to the
viscous terms, and we obtain the Stokes equation

V2T au (op)---+ ~u=Re - (3.1.4)
II at ax

This equation is purely of an elliptic type in the steady-state case for a fixed
pressure gradient, but parabolic in the unsteady case due to the Laplace
operator on the left-hand side. Actually, the Laplace equation (or the Poisson
equation) can be considered as the standard form of an elliptic equation
describing an isotropic diffusion in all space directions.

At the other end, at very high Reynolds numbers and outside the boundary
layers, the viscous terms have a negligible influence on the flow field, which is
then dominated by the non-viscous transport terms describing the effect of the
convective fluxes. Hence the equation reduces to the Euler equation

au - - 1op
-+(v' V)u= --- (3.1.5)

at pax

which in a one-dimensional space takes the form

~+ u ~= -1. ~ (3.1.6)
at ax pax

and is a basic hyperbolic equation in space and time describing a propagation

phenomenon.
This distinction is of paramount importance, since the numerical discretiza-

tion and solution methods will have to take into account the differences
between phenomena as distinctive and far apart in their physical behaviour as
diffusion and propagation. The former property is essentially independent of
the flow direction acting in all directions and in the whole space domain, while
the latter is essentially direction dominated and acts in specific regions of space
defined by the wave-propagation directions.

Between these two extremes the parabolic type of equations (in space and
time) for a time-dependent, diffusion-dominated system

( ~Re ) ~= ~u (3.1.7)

L at

represents an intermediate situation between hyperbolic and elliptic. This
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equation, which reduces to a pure diffusive process in the steady state,
describes a diffusion effect propagating in all space directions but damped in
time. Hence the system of time-dependent Navier-Stokes equation is essen-
tially parabolic in time and space, although the continuity equation has a
hyperbolic structure. Therefore they are considered as parabolic-hyperbolic.
For the same reason, the steady-state form of the Navier-Stokes equations
leads to elliptic-hyperbolic properties.

3.2 THE CONCEPT OF CHARACTERISTIC SURF ACES AND
WAVE-LIKE SOLUTIONS

The systems of partial differential equations (PDE) describing the various
levels of approximation discussed in Chapter 2 are quasi-linear and, at most,
second. order. It can be shown, however, that any second-order equation, or
system of equations, can be transformed into a first-order system. Although
this transformation is not unique and could lead to an artificially degenerate
system, it will be considered that an appropriate transformation has been
defined such that the system of first order represents correctly the second-order
equations.

The classification of the flow equations is connected to the mathematical
concept of characteristics, which can be defined as families of surfaces or
hypersurfaces in a general three-dimensional unsteady flow, along which
certain properties remain constant or certain derivatives can become discontin-
uous. The discussion of these properties can be found in many textbooks, and
we refer to Courant and Hilbert (1962) for a mathematical presentation. We
will give here the preference to a more 'physical' presentation of the structure
of PDEs and of the associated concept of characteristic surfaces.

A system of quasi-linear partial differential equations of the first order will
be called hyperbolic if its homogeneous part admits wave-like solutions. This
implies that an hyperbolic set of equations will be associated with propagating
waves and that the behaviour and properties of the physical system described
by these equations will be dominated by wave-like phenomena. On the other
hand, if the equations admit solutions corresponding to damped waves the
system will be called parabolic, and if it does not admit wave-like solutions the
equations are said to be elliptic. In this case the behaviour of the physical
system being considered is dominated by diffusion phenomena.

3.2.1 Partial differential equation of second order

These different concepts are best introduced through the classical example of
the quasi-linear partial differential equation of second order:

i
a2<t> a2cj$ a2<t>a aX! + 2b axay + c ar = 0 (3.2.1)
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where a, band c can depend on the co-ordinates x and y, the function <f> and
its first derivatives. This equation can be written as a system of first-order
equations, after introduction of the variables u and v defined by

a<f> a<f>u = ~ v = ay (3.2.2)

Equation (3.2.1) is then equivalent to the following system:

au au av
a-+2b-+c-=0ax ay ay

(3.2.3)
~-~=O
ax ay

which can be written in matrix form:

l a ol ~ l u l + 1 2b C I ~ l u
l =o (3.2.4)

0 I ax v - I 0 ay v

Introducing the vector U and the matrices A I and A 2,

u=I~1 AI=I; ~I A2=1:~ ~I (3.2.5)

equation (3.2.4) is written as

AI~+A2~=0 (3.2.6)

A simple plane wave solution, propagating in the direction n, is sought of the
form

U = Uel{ii' x) = Uel{n,x+ n"y) (3.2.7)

where 1= J - I.
Equation (3.2.6) will have solutions of form (3.2.7) if the homogeneous

system
1 2 ~

(A nx + A ny)U = 0 (3.2.8)

admits non-trivial solutions. This will be the case when the determinant of the
matrix (A 1 nx + A 2 ny) vanishes, that is if

detlAlnx+A2nyl =0 (3.2.9a)

or

I anx + 2bny cnY
I = 0 (3.2.9b)- ny nx

Hence from the roots of

a(~)2 + 2b(~) + c = 0 (3.2.10)
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the well-known conditions defining the type of the second-order quasi-linear
partial differential equation (3.2.1) are obtained.

Solution (3.2.7) will represent a true wave if ny is real for all real values of
nx. Therefore if (b2 - ac) is positive there are two wave-like solutions, and the
equation is hyperbolic, while for (b2 - ac) < 0 the two solutions are complex
conjugate and the equation is elliptic. When (b2 - ac) = 0 the two solutions
are reduced to one single direction nxlny = bl2a and the equation is parabolic.

3.2.2 Wave front or characteristic surfaces

A more general representation of non-linear wave propagation consists of
defining a wavefront surface, which separates the points already influenced by
the propagating disturbance from the points not yet reached by the wave. If
S(x, y) = So (where So is a constant) is such a surface (also called the phase of
the wave) a solution of the form

U= UeIS(x.y) (3.2.11)
represents a general wave.

A system of equations is hyperbolic if equation (3.2.11) is a solution for real
values of S(x, y). Hence introducing this solution into equation (3.2.6) leads
to the condition

det I A ISx + A2Sy I = 0 (3.2.12)

where the notation Sx and Sy are used to denote the partial derivatives of S
with respect to x and y. This condition is identical to equation (3.2.9) if the
normal n to the surface S(x, y) is interpreted as the propagation vector in
representation (3.2.7). That is, if

n= VS (3.2.13)

The surfaces S(x, y), which satisfy equation (3.2.12) for real values of S, are
called characteristic surfaces, and the directions n obtained from equation
(3.2.10) are the normals to the characteristic surfaces.

If equation (3.2.13) is introduced into the wave form (3.2.7) a general
non-linear wave representation is defined, equivalent to solution (3.2.11), as

U=Ue/(x'VS)=Ue/(Xsx+Y.s:,,) (3.2.14)'

By definition, certain properties are transported along the surface S(x, y) and
the vectors tangent to the characteristic surface are obtained by expressing that
along the wave front: - - as as

IdS= VS. dx=- dx+- dy=O (3.2.15)
ax ay

Hence the direction of the characteristic surface (a line in two dimensions) is
given by

~=-~=_!!.!- (3.2.16)
dx Sy ny
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Example 3.2.1 Stationary potential equation

An interesting example is provided by the stationary potential flow equation in
two dimensions x, y (see Problem 2.12), where Co designates here the speed of
sound:

( U2) a2ct> 2uva2ct> ( V2) a2ct> 1-2 -;-2--Y -;-;-+ 1-2 -;-2=0 (E3.2.1)
Co uX Co uxuy Co uy

With

U2 UV v2
a= 1-2; b= -2; C= 1-2 (E3.2.2)

Co Co Co

we can write the potential equation under the form (3.2.1). In this particular
case the discriminant (b2 - ac) becomes, introducing the Mach number M,

U2 + V2b2 - ac = 2 - 1 = M2 - 1 (E3.2.3)
Co

and hence the stationary potential equation is elliptic for subsonic .flows and
I hyperbolic for supersonic .flows. Along the sonic line M = 1 the equation

is parabolic. This mixed nature of the potential equation has been a great

challenge in the numerical computation of transonic flows since the transition
, line between the subsonic and the supersonic regions is part of the solution. An
: additional complication arises from the presence of shock waves which are

discontinuities of the potential derivatives and which can arise in the super- ;
sonic regions. The particular problems of transonic potential flow with shocks C

and their numerical treatment will be discussed in Volume 2.

The small-disturbance potential equation If the vertical velocity component
is negligible (for instance, for a flow along a thin body) the stationary potential §
equation reduces to the form

2 a2ct> a2ct>(1 - M«» axz + ar = 0 (E3.2.4)

where M~ is the upstream Mach number (see equation (2.9.25».
The solutions of equation (3.2.10) are

~ = ::!: J(M~ - 1) (E3.2.5)
nx

defining the normals to the two characteristics for supersonic flows. Their
directions are obtained from equation (3.2.16) as

¥x=::!: 1/J(M~-1)=::!: tan It (E3.2.6)

Referring to Figure E3.2.1 it can be seen that these characteristics are identical
to the Mach lines at an angle It to the direction of the velocity, with

sin It = 11M~ (E3.2.7)
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Figure E3.2.1 Characteristics for two-dimensional potential equation

3.2.3 General definition

Let us consider a system of n first-order partial differential equations for the n
unknown functions uj in the m-dimensional space Xk (k = 1, ..., m), even-
tually including time, written in the conservation form with a summation
convention of repeated super- or subscripts:

~Fjk=Qj k=I,...,m i=I,...,n (3.2.17)
ax

The analysis of the properties of this system relies on the quasi-linear form,
obtained after introduction of the Jacobian matrices A k, where

k a Fjk
Ajj=w (3.2.18)

is the Jacobian matrix element of the flux Fjk with respect to the variable uj.
System (3.2.17) takes the quasi-linear form:

At.~=Qj i,j=I,...n k=I,...,m (3.2.19)
ax

This can be condensed into the matrix form:

Ak~=Q k=I,...,m (3.2.20)ax
where the (n x 1) vector column Ucontains the uj unknowns, Ak are (n x n)
matrices and Q is a column vector of the non-homogeneous source term'5. The
matrices A k and Q can depend on Xk and U but not on the derivatives of U.

A plane wave solution of the form (3.2.7), or of the more general form
(3.2.11), will exist if the homogeneous system

[Aknk]U=O (3.2.21a)
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1
Figure 3.2.1 Wave front surface and associated normal b

or

[ k as ] ~

A ~ u= 0 k = 1, ..., m (3.2.21b)

has non-trivial solutions. Defining the normal ii to the wavefront surface by
ii = V S (Figure 3.2.1), this will be the case if the determinant of the system
vanishes, that is, if l

detlAknkl=O (3.2.22)

Equation (3.2.22) then defines a condition on the normal nk = aSjaxk to the
surface S. This equation can have, at most, n solutions, that is, there are, at
most, n characteristic surfaces. For each of these normals ii(a), system (3.2.21)has a non-trivial solution. '

The system is said to be hyperbolic if all the n characteristic normals
Vs(a) = ii(a) are real and if the solutions of the n associated systems of
equations (3.2.21) are linearly independent. If all the characteristics are
complex, the system is said to be elliptic and if some are real and others
complex the system is considered as hybrid. If the matrix (A k nk) is not of rank

n (that is, there are less than n real characteristics) then the system is said to be
parabolic. This will occur, for instance, when at least one of the variables, say
u 1 has derivatives with respect to one co-ordinate, say Xl, missing. This
implies that A!t = 0 for all equations i.

Example 3.2.2 System of two first-order equations in two dimensions

The above-mentioned properties can be illustrated in a two-dimensional space
x, y with the system

au au
a-+c-=fl

ax ay

(E3.2.8)
b au d au - I:

-+ --J2
ax ay
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or in matrix form:

l a 0 1 .~ l u l + I O C I .~ l u l = 1 /1 1 (E3.2.9)
0 b ax v d 0 ay v h

H . h i 2ence .wlt x = x, x = y:

AI=I~ ~I A2=1~ ~I (E3.2.10)

The determinant equation (3.2.22) becomes, after division by ny (assumed to
be different from zero),

anx- C

ny
=0 (E3.2.11)

d ~
ny

leading to the conditions for the characteristic normals:

I !!!:. 1 2 = ~ (E3.2.12)

ny ab

If cb/ ab > 0, the system is hyperbolic: for instance, a = b = 1; c = d = I
with vanishing right-hand side, leading to the well-known wave equation

a2u a2u
-a?-ar=O (E3.2.13)

If cd/ ab < 0, the system is elliptic; for instance, a = b = 1; c = - d = - I and
vanishing right-hand side, leading to the Laplace equation, which is the
standard form of elliptic equations and describes diffusion phenomena.

Finally, if b = 0 there is only one characteristic normal nx = 0 and the
system is parabolic. For instance, with a = I, b = 0, c = - d = - 1 and II = 0,
h = v we obtain the standard form for a parabolic equation:

au a2ua:x= ar (E3.2.14)

Example 3.2.3 Stationary shallow-water equations

The stationary shallow-water equations describe the spatial distribution of the
height h of the free water surface in a stream with velocity components u and
v. They can be written in the following form (where g is the earth's gravity
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acceleration):

oh oh AU ov
u-+v-+h-+h~=O

ox oy ox oy

au au oh
u -+ v -+ g -=0 (£3.2.15)

. ox oy ox

ov ov oh
u-+v-+g-=O

ox oy oy

Introducing the vector

h
U= u (£3.2.16)

v

system (£3.2.15) is written in the matrix form (3.2.19):

uhOoh vOhohg u 0 - u + 0 v 0 - u = 0 (£3.2.17)
ox oyOOu v gO v v

or

A 1 ~+ A2 ~= 0 (£3.2.18)
ox oy

The three characteristic normals jj are obtained as the solutions of equation
(3.2.22), with}" = nx/ ny:

u}.. + v h}" h
g}.. u}..+v 0 =0 (£3.2.19)
g 0 u}.. + v

Working out determinant (£3.2.19) leads to the solution

}.. (I) = - ~ (£3.2.20)
u

and the two solutions of the quadratic equation
(U2 - gh))" 2 + 2}..uv + (V2 - gh) = 0 (£3.2.21)

}..(2),(3) = - uv :!: J\U2 + V2 - gh) (£3.2.22)

u -gh

It is seen that j(gh) plays the role of a sonic, critical velocity and the system is
hyperbolic for supercritical velocities 172 = U2 + V2 > gh. Otherwise, the
system is hybrid, since the first solution}.. (I) is always real.

Note that the characteristic surface associated with the solution}.. (I) is the
streamline, since the vector jj(l) has components proportional to nll) = - v
and nf) = u and therefore jj(l) . 17 = O.

l
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3.2.4 Domain of dependence-zone of influence

The propagation property of hyperbolic problems has important consequences
with regard to the way the information is transmitted through the flow region.
Considering Figure 3.2.2, where r is a boundary line distinct from a
characteristic, the solution U along a segment AB of r will propagate in the
flow domain along the characteristics issued from AB. ..

For a two-dimensional problem in the variables x, y determined by a
second-order equation such as (3.2.1) there are two characteristics if the
problem is hyperbolic. Hence the two characteristics out of A and B limit the
region P AB, which determines the solution at point P. The region P AB is
called the region of dependence of point P, since the characteristics out of any
point C outside AB will never reach point P. On the other hand, the region
downstream of P, and located between the characteristics, defines the zone
where the solution is influenced by the function value in P. This region is called
the zone of influence of P.

dence of point P

Figure 3.2.2 Region of dependence and zone of influence of point P for a hyperbolic
problem with two characteristics per point

Parabolic problems

For parabolic problems the two characteristics are identical (Figure 3.2.3) and
the region of dependence of point P reduces to the segment BP. The zone of
influence of P, on the other hand, is the whole region right of the characteristic
BP.

.
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Figure 3.2.3 Region of dependence and zone of influence of point P for
a parabolic problem with one characteristic per point

Elliptic problems
In this case there are no real characteristics and the solution in a point P
depends on an the surrounding points, since the physical problem is of the ,
diffusive type. Inversely, the whole boundary ACB surrounding P is influenced
by point P (Figure 3.2.4). Hence we can consider that the dependence region is
identical to the zone of influence, both of them being equal to the whole of the
flow domain. ,

I

I
I

l

t

P depending on and influencing the whole region

Figure 3.2.4 Region surrounding P in an elliptic problem ~
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3.3 Alternative definition-Compatibility relations

An alternative definition of characteristic surfaces and hyperbolicity can be
obtained from the fact that wave front surfaces carry certain properties and
that a complete description of the physical system is obtained when all these
properties are known. This implies that the original system of equations, if
hyperbolic, can be reformulated as differential relations written along the wave
front or characteristic surfaces only. Hence the following definition can be
given: a characteristic surface S (Xl, ..., xm) = 0 will exist jf the first-order
system of equations (3.2.20) can be transformed through a linear combination
of the form, where fare n arbitrary coefficients:

fAt~=fQi i,j=l,...,n k=I,...,m (3.3.1)

into an equivalent system containing only derivatives along the surface S.
Along the surface S(XI, ..., xm) = 0 one of the co-ordinates can be elim-

inated, for instance XIII, by expressing

as kdS =";;iXk dx = 0 (3.3.2)

or, along the surface S,

~ I --~~--~ axk s - as/ax''' - n,n (3.3.3)

where the components of the normal vector n = VS are introduced. Hence
we can define derivatives dJljxk along the surface S in the following way. For
any variable u) the partial derivative OJaXk along the surface S is given by

a a (ax"') a a (nk) a ";;iXk =";;iXk + aXk axm =";;iXk - n: axm k = I, ..., m (3.3.4)

Note that for the variable xm the surface derivative is zero, that is, dJljxm = O.
Introducing this relation into the linear combination (3.3.1) leads to

i k [ a (nk) a ] . i [Ai) ";;iXk + n: . axm uJ = [ Qi (3.3.5)

The summation over k extends from k = 1 to k = m. A characteristic surface
will exist for any u) if the system is reduced to the form

[ iA ~.l ) - [ iQ " .. - 1 k - 1 (3 3 6)IJaxkU - I l,j- ,...,n - ,...,m ..

This is satisfied if the surface S obeys the relations, for any u),
i k[ A i)nk = 0 (3.3.7a)

I
lor,

~ fAt;t.=O i,j=I,...,n k=I,...,m (3.3.7b)
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The conditions for this homogeneous system, in the f unknowns, to be ,
compatible is the vanishing of the determinant of the coefficients, leading to I

condition (3.2.22). For each solution ii(a) of equ;ation (3.2.22), system (3.3.7) !

Ihas a non-trivial solution for the coefficients I,(a), up to an arbitrary scale
factor. The f(a) coefficients can be grouped into a (n x 1) line vector /(a).

IThe system is said to be hyperbolic if ~ll the n characteristic normals aks(a)
or ii(a) are real and if the n vectors Ita), (a = 1, ..., n) solutions of the n
systems of equations (3.3.7) are linearly independent.

3,3,1 Compatibility relations

The reduced form (3.3.6) expresses that the basic equations can be combined
to a form containing only derivatives confined to a (n - 1) dimensional space.
That is, the system of equations, if hyperbolic, can be considered as
describing phenomena occurring on hypersurfaces s(a). Indeed, defining a
set of n vectors ij in the m-dimensional space, with components
zj : j = 1, ..., n; k = 1, ..., m by the relations

k i kZj = I Aij (3.3.8)

equation (3.3.1) can be rewritten as

k aui i
Zj ~= I Qi (3.3.9)

ax m-1
~ The vectors i define n characteristic directions of which (n - 1) are

independent.
The operators (zjak) are the derivatives in the direction of the vector ij.

Hence, defining
k a --dj=Zj~=Zj'V (3.3.10)ax r-

in the m-dimensional space, the transformed equation (3.3.1) can be written as
a sum of derivatives along the vectors ij:

djuj=ij, vUj=(fQi) (3.3.11)

Equations (3.3.11) are known as the compatibility relations, and represent an
alternative formulation to system (3.2.19).

Condition (3.3.7) expresses that all the ij vectors lie in the characteristic
surface whose normal is ii. Indeed, equation (3.3.7) becomes, with the

introduction of ij,

ij,ii=Zjnk=O forallj=I,.,.,n (3.3.12)

These phenomena correspond to propagating wavefronts, as seen earlier, and
it can be shown, see, for instance, Whitham (1974), that the characteristic
surfaces can also contain discontinuities of the normal derivatives aujlan,

I
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satisfying , -

"~ k [ auj
]Aijnk an =0 (3.3.13)

where

[~ ] = (~ ) - (~ ) (3.3.14)an an + an-

is the jump, over the surface S, of the normal derivatives of the solution uj.
This relation can also be written

[ aRfc]nk -ai; = 0 (3.3.15)

where a/an is the normal derivative to the surface S.

r Example 3.3.1 Small-d~turbance potential equation (E3.2.4)

The two vectors I associated to the two characteristic normals (E3.2.5) are
obtained from system (3.3.7), which is written here as

(II, f) I (1 - M~)nx ny
l = 0 (E3.3.1)

- ny nx

where the ratio A = ny/ nx is defined as the solution (E3.2.5). Choosing II = 1,
system (E3.3.1) has the solution

II = 1
f = J(M~ - 1) (E3.3.2)

The two characteristic directions Zj, defined by equation (3.3.8), become here- 2Z, = (1 - M~, A)- - " 1) (E3.3.3) Z2 = (- /\,

Observe that these two directions are parallel to each other, since
1 - M~ = A 2 and that their common direction is the characteristic line of
Figure E3 .2.1, making the angle IJ. with the x-direction, since A = cos lJ./sin IJ..
This can also be seen from a direct verification of equation (3.3.12), with the
vector of the characteristic normal defined by the components n = (1, A),
which indicates that the Z-directions are orthogonal to the normals n.

The compatibility relations (3.3.9) or (3.3.11) become here

[(1 -lv!~) fx+ A~] u + [- A fx +~] v = 0 (E3.3.4)

or

cot an IJ.[ cos IJ. fx =+= sin IJ. ~] u :t [cos IJ. fx =+= sin IJ. ~] v = 0 (E3.3.5)
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For constant Mach angles p, the compatibility relation expresses the property
that the velocity component along one characteristic (u cos p, :t v sin p,) is
conserved along the other characteristic.

3.4. Time-like variables

More insight into the significance of characteristics is obtained if one space
variable, say xm, is singled out and the corresponding Jacobian matrix A m is
taken as the unit matrix. This will always be possible if the matrix is positive
definite, since we can multiply the original system of equations by AmI-I). We
will call this variable time-like and take xm = t, with the conditions

A'{j=oijwithxm=t (3.4.1)

System (3.2.20) is written as

au kau
-a-;;-+A ~=Q k=I,...,m-1 (3.4.2)

Note that (m - I) is now the number of space-like variables. The characteristic
condition, equation (3.2.22), becomes with nm = nt

detlnt+Aknkl=O k=I,...,m-1 (3.4.3)

Equation (3.4.3) is therefore an eigenvalue problem where the characteristic
normals are obtained as the eigenvalues of the matrix

Kij=Atnk k=I,...,m-1 (3.4.4)

satisfying

detIK-)../I=O (3.4.5)

If the n eigenvalues )..(a) are real there are n characteristic surfaces with

nt(a) = - )..(a) (3.4.6)

The corresponding vectors Tare obtained from equation (3.3.7), written as
i kI (Oijn, + Aijnk)=O k=I,...,m-1 (3.4.7)

or

fKij=)..(a)fOij i,j=I,...,n (a)=I,...,n (3.4.8)

Hence the vectors T(a) of components f(a) are the left eigenvectors of the
matrix K corresponding to the eigenvalue )..(a). If the n eigenvectors T(a) are
linearly independent, the system will be hyperbolic.

If the n eigenvectors T(a) are grouped in a matrix L -I, where each row
contains the components of an eigenvector T(a), that is,

(L -I)ia = r(a) (3.4.9)

we obtain from the eigenvector equation (3.4.8) that the matrix L diagonalizes
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the matrix K:

L"-lKL=A (3.4.10)

where A is the diagonal matrix containing the eigenvalues )..(a):

)..(1)

A= )..(2)... (3.4.11)

0 )..(n)

It is also interesting to note that, within the same assumptions, the
intensities of the propagating disturbances are, following equation (3.2.21),
the right eigenvectors f(a) of K, since equations (3.2.21) or (3.3.13) can be
written, with equations (3.4.1) and (3.4.5),

K;JrJ=)..(a)rJoij i,j=l,...,n (3.4.12)

3.4.1 Plane wave solutions with time-like variable

With the introduction of the time-like variables the plane wave solutions
(3.2.7) can be written in a more conventional way:

U=Uel(x.x-"'t) (3.4.13)

The vector;; is called the wave number vector, and its magnitude is the
number of periods or wavelengths over a distance 211" in the direction of the
vector;;. Since this simple wave is a solution of the convection equation

au ""

ai+(a'V)U=O (3.4.14)

where

0=';;; (3.4.15)
x

it is clear that the direction of;; is the propagation direction of the wave with a
phase velocity, given by

'"
a=- (3.4.16)

x

We also have the following relation between frequency 1', wavelength)" and the
variables x and "';

211"
)..=- ",=211"1' )..I'=a (3.4.17)

x

typical of plane waves.
Wave-like solutions to the homogeneous system of equations (3.4.2), with

Q; = 0, will exist if the components of equation (3.4.13)

uJ=uJel(x.x-",t) (3.4.18)
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are solutions of the equation, with xm = t:
k .

(-"'Oij+}(kAij)UJ=O (3.4.19)

The condition of compatibility is that the determinant of the system vanishes:

det 1- "'Oij+ }(kAt 1= 0 (3.4.20)

which leads to condition (3.4.3) with nt = - '" and nk = }(k.

Hence for each wave number vector x a perturbation in the surface normal
to x propagates in the direction of x with phase velocity a and frequency'"
equal to the eigenvalue of the matrix K= Ak}(k. If we group the (m - I)
matrices Ak in a vector A of dimensions (m-I), A (Ai,...Am-I), we can
write the matrix K as a scalar product:

-+ -+

K=A.}( (3.4.21)

The propagation speed associated with the characteristic frequency of the
perturbation "'(a) is obtained as the eigenvalue of the matrix

A -+ x-+-+

K=A .-=A. 1" (3.4.22)
)(

where T" is the unit vector in the direction x. Hence the characteristic speeds
a(a) are obtained as solutions of the eigenvalue problem:

det I - a(a)ij + Kij I = 0 (3.4.23)

For an elliptic system the eigenvalues are compl~x and the solution takes the
form, for an eigenvalue "'I = ~ + 11/:

VI= Ule-lF.felx.Xe+1Jt (3.4.24)
Since the coefficients of the Jacobian matrices A k are considered to be real,

each eigenvalue "'I = ~ + 11/ is associated with a complex conjugate eigenvalue
"'2 = ~ - 11/, leading to a solution of the form

V2= U2e-I~telx.Xe-1Jt (3.4.25)

Hence according to the sign of the imaginary part of the eigenvalue one of the
two solutions VI or V2 will be damped in time while the other will be
amplified. ~

Example 3.4.1 Time-dependent shallow-water equations in one dimension

The one-dimensional form of the time-dependent shallow-water equations can

be written as

~+u~+h~=Oat ax ax
(E3.4.1)

au au ah
-+u-+g-=Oat ax ax
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In matrix form, we have

~ I h 1 + I u h I ~ I h
1 = 0 (E3.4.2)

at u g u ax u

The two characteristic velocities 01,2 are obtained from equation (3.4.23) as
solutions of

1 - 0 + u h
I = 0 (E3.4.3)

g -o+u

or

01,2= U :t f(iii"j (E3.4.4)

Since these eigenvalues are always real, the system is always hyperbolic in
(x, t).

3.4.2 Non-linear wave solutions and time-like variable

A general solution of forms (3.2.11) or (3.2.14), with condition (3.4.1) can be
written

u= Uel(x. vs+tS,) (3.4.26)

For this wave to be a solution of the homogeneous system

au kau-+A -;-::::I=O k=1,...,m-1 (3.4.27)at ax
S has to satisfy the equation

I as as
Idet - + Ak ~ = 0 (3.4.28)

at ax

which is identical to the characteristic condition equation (3.4.3). Hence the
frequency l.I) of the wave is defined by

asl.I)= --= - nt (3.4.29)

at

and the wave number vector x is defined by

x=VS=n (3.4.30)

In this notation V S is the normal to the intersection of the characteristic or
wavefront surface S(x, t) with the hypersurfaces t = constant. Hence the
normals are defined in the (m - 1) dimensional space of the space-like
variables. On the other hand, the normals n defined in Section 3.2.2, equation
(3.2.13), are normals to the wavefront surfaces in the m-dimensional space
Xl, ..., xm. Observe also that the wave-number x, in the space
xk(k = 1, m - 1) is normal to the characteristic subsurfaces S(x, t) at constant
t.



152

The n eigenvalues of the matrix Kij = At Xk define the n dispersion relations
for the frequencies UJ(Q):

UJ(Q) = A(Q)(X(x, f)) a = 1, ..., n (3.4.31)

Note that a non-linear wave can be only written under form (3.4.13) with

x= x(x, t)
(3.4.32)

UJ = UJ(x(x, f))

and the same local definition of wave number and frequency, under certain
conditions.

Indeed, when introduced into equations (3.4.14) the above n{)n-linear
solution gives the following contributions:

~ I(k'x -",1:)

U.Ue au [ aUJ - ax] [ - - ax
]- = IU - UJ - t --+ x. - = IU - UJ + (x - tV "UJ) . -

at at at at
(3.4.33)

au [ aUJ - ax] [ - - ax
]~=IU Xk- t~+ x.~ =IU Xk+(X- tV"UJ).~

The derivative of the frequency with respect to the wave number component
Xj is the j-component of the group velocity of the wave

v~G) = ~ (3.4.34)
J aXj

or, in condensed notation,

z7<G) = V"UJ (3.4.35)

The terms in parentheses in equation (3.4.33) will vanish for an observer
moving with the group velocity, that is, for

x -
-= V"UJ (3.4.36)
t

Note that the group velocity is the velocity at which the wave energy
propagates. The reader will find an extensive discussion of non-linear waves in
Whitman (1974).

3.5 INITIAL AND BOUNDARY CONDITIONS

The information necessary for the initial and boundary conditions to be
imposed with a given system of differential equations in order to have a
well-posed problem" can be gained from the preceding considerations. The
condition of being well posed (according to Hadamard) is established if the
solution depends in a continuous way on the initial and boundary conditions.
That is, a small perturbation of these conditions should give rise to a small
variation of the solution at any point of the domain at a finite distance from
the boundaries.
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Two types of problems are considered with regard to the time-like variable
xm = t: an initial value or a Cauchy problem, where the solution is given in the
subs pace xm = t = 0 as U = U(x, t = 0) and is to be determined at subsequent
values of t. If the subs pace t = 0 is bounded by some surface O(x) then

additional conditions have to be imposed along that surface at all values of t,
and this defines an initial boundary value problem.

A solution of the system of first-order partial differential equations can be
written as a superposition of wave-like solutions of the type corresponding to
the n-eigenvalues of the matrix K:

n

U= ~ U"e/(;.1-",(,.)I) (3.5.1)
,,=1

where the summation extends over all the eigenvalues A(,,), U being the column
containing the unknowns uj.

If Nr and Nc denote, respectively, the number of real and complex
eigenvalues, considered to be of multiplicity one, with n = Nc + Nr, it is seen
from equation (3.4.24) that the complex eigenvalues will generate amplified
modes for 11 > O. If such a mode is allowed the problem will not be well posed
according to Hadamard. Therefore the number of initial and boundary
conditions to be imposed have to be selected to make sure that such modes are
neither generated nor allowed.

If the problem is hyperbolic, Nc = 0 and Nr = n, and since no amplified
modes are generated, n initial conditions for the Cauchy problem have to be
given in order to determine completely the solution. That is, as many
conditions as unknowns have be given at t = O.

On the other hand, if the problem is elliptic or hybrid there will be Nc/2
amplified modes and hence only Nr + Nc/2 conditions are allowed. Since this
number is lower than n, the pure initial value or Cauchy problem is not well
posed for non-hyperbolic problems, and only boundary value problems will be
well posed in this case. The inverse is also true: a pure boundary value problem
is ill posed for a hyperbolic problem. For an elliptic system Nr = 0, and the
number of boundary conditions to be imposed at every point of the boundary
is equal to half the order of the system. For instance, for a second-order
hyperbolic equation two conditions will have to be fixed along the initial
Cauchy line, while for a second-order elliptic equation one condition will have
to be given along the boundaries.

For initial boundary value problems the n boundary conditions have to be
distributed along the boundaries at all values of t, according to the direction of
propagation of the corresponding waves. If a wave number x is taken in the
direction of the interior normal vector ii, then the corresponding wave, whose
phase velocity is obtained as an eigenvalue of the matrix (A k . nk), will

propagate information inside the domain if this velocity is positive. Hence the
number of conditions to be imposed for the hyperbolic initial boundary value
problem at a given point of the boundary is equal to the number of positive
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eigenvalues of the matrix A k . nk at that point. The total number of conditions

obviously remains equal to the total number of eigenvalues, that is, to the
order of the system. For hybrid problems the conclusions are the same for the
real characteristics, but Nc/2 additional conditions have to be imposed
everywhere along the boundary. Note also that, next to the number of
boundary conditions to impose, the nature of these conditions can also be
important in order to avoid ill-posed conditions along the boundaries. This
will be discussed more in detail in the following chapters.

Parabolic problems in t and x define initial boundary value problems.
Hence the solution is to be defined at t = 0, that is, for an order n, n conditions
have to be given at t = O. Along the boundaries for all times, n/2 boundary
conditions have to be imposed. This is the case for the standard form of
parabolic equations 'd,u = L(u), where L(u) is a second-order elliptic operator
in space.

A more complex parabolic structure arises in boundary layer theory, where
the equations are of the form Uyy = L(u), where L(u) is an hyperbolic
first-order operator in the space x, y, z, with y the co-ordinate normal to the
wall. This leads to complex mixed parabolic-hyperbolic phenomena in
three-dimensional boundary layer calculations. (Some of these aspects are
described in Krause, 1973 and Dwyer, 1981). The boundary conditions are of
the initial value type for the hyperbolic components and of boundary value
nature for the elliptic parts of the system.

The whole system of Navier-Stokes equations is essentially parabolic in time
and space or parabolic-hyperbolic, while the steady-state part is elliptic-
hyperbolic, due to the hyperbolic character of the continuity equation
considered for a known velocity field. On the other hand, in the absence of
viscosity and heat conduction effects, the system of time-dependent Euler
equations is purely hyperbolic in space and time. I

The various approximations to the Navier-Stokes equations discussed in
this chapter have evidently different mathematical properties. For instance, in
the TSL approximation or the boundary layer approximations the diffusive
effect of viscosity is neglected in all directions except in those normal to the
wall. Therefore the resulting equations remain parabolic in time and in the
direction normal to the surface, while the behaviour of the system will be
purely hyperbolic in the other two directions and time. The global property
remains, however, parabolic, although the local behaviour of the system is
modified compared with the full Navier-Stokes model. This leads to impor-
tant consequences for the numerical simulation of three-dimensional bound-
ary layers; see Dwyer (1981), for a recent review.

From a mathematical point of view, no general, global existence theorems
for the non-stationary compressible Navier-Stokes equation with a defined set
of boundary and initial conditions can be defined. Some partial, local existence
theorems have been obtained, Temam (1977); Solonnikov and Kazlikhov
(1981), for both the Cauchy problem, that is, given distributions of density,
velocity and temperature at time t = 0, and for initial boundary value problems
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where the flow parameters are given at t = 0, boundary conditions are imposed
at all times for velocity and temperature on the boundary of the flow domain.

These investigations do not lead at present to practical rules for the
establishment of boundary conditions, and therefore case-by-case considera-
tions have to be used as a function of the type of the equations and of physical
properties of the system. In general, the elliptic time-independent problems
will impose the values of the flow variables (Dirichlet conditions) or their
derivative (Neumann conditions) on the boundaries of the flow domain. Due
to physical considerations, for fluid conditions far from the molecular free
motions (Knudsen numbers below 10-2) the velocity should be continuous at
the material boundaries. This leads to the well-known no-slip conditions for
the velocity for the Navier-Stokes equations. For the temperature, one of the
following three conditions can be used, T w being the wall temperature:

T = T w fixed wall temperature (Dirichlet condition)

k ~ = q fixed heat flux (Von Neumann condition)

k ¥ = a( T - T w) heat flux proportional to local heat transfer
n (mixed condition)

For other elliptic equations, such as the subsonic potential or streamfunction
equations, the choice will be made on the basis of the physical interpretation of
these functions, and this will be discussed in the appropriate chapters.

Inviscid flow equations, being first order, allow only one condition on the
velocity, namely that the velocity component normal to the wall is fixed by the
mass transfer through that wall, while the tangential component will have to
be determined from the computation and will generally be different from the
non-slip value, since slip velocities are allowed. For free surfaces the physical
conditions are chosen on the basis of continuity of the normal and tangential
stresses and of the statement that the free boundary is a streamsurface.
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PROBLEMS

Problem 3.1.

Consider the steady potential equation (E3.2.1) for supersonic flows, M> I. From
Example 3.2.1 it is known that the equation is hyperbolic. Obtain the two vectors /(a),
a = 1,2 associated with the two characteristic normal directions n(a), solutions of

equation (3.2.9).
Show that the two characteristics form an angle :t po with the velocity vector V, with

sin po = 11M. The angle po is called the Mach angle. Write also the compatibility relations
(3.3.11) after having defined the characteristic directions Zj according to equation
(3.3.8).
Hint: Define {3 as the angle of the velocity vector by cos {3 = ull vi, sin (3 = vII vi.
Setting nx = I, show that ny = - cotan({3 :t po). Selecting II = I, obtain h = - cny from

equation (3.2.7). Obtain
~ I a I ~

I -cny
lZ, = Z2 =

-2b + cny c

and verify equation (3.3.12). Note also that Z, and Z2 are in the same direction since
they are both orthogonal to n. Show by a direct calculation that the vector product of
Z, and Z2 is indeed zero.

Referring to the general form of equation (3.2.1), obtain the compatibility relation

au au ov ova -+ (cny -2b) -- cny -+ c-=O
ox oy ox oy

Problem 3.2.

Show that the solutions >'(2) and >'(3) for the shallow-water equations, Example 3.2.3,
have the same properties as the two characteristic normals of the potential equation
obtained in Problem 3.1.

Problem 3.3
Show that for the transformation leading to equation (3.4.2) A '(j = fJ;j, the characteristic
directions (3.3.8) become

Z !II- I ;~..:I - VI)

k ; kZj =IA;j k=I,...,m-1
Form the (n x m) matrix ZJand note that the last line (j being the column index) is
formed by the vector I: Show that the orthogonality condition (3.3.12) is equivalent to
equation (3.4.8) and that we have, for a wave number vector ii,

k ;Zjxk=>.lfJ;j k=I,...,m-1

Problem 3.4

Referring to the one-EimensiQ.nal shallow-water equations treated ill Examl'le 3.4.1,
find the eigenvectors 1(') and 1(2) as well as the characteristic vectors Z, and Z2. Derive
also the compatibility relations (3.3.11).
Hint: Show that the left eigenvectors are proportional to ill, :tJViTi5]. Since
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I m - I = I, and XI = x, the characteristic vectors have the components

7.1 = I u :t ~ I 7.2 = :t ~ I u :t fih> I

Show that we obtain

ah ah Jh(au - fI:-i:\ au)-+[u:tJ(iii5]-:t- -+[u+.;(gh)]- =0
at ax g at . ax

where the upper signs refer to the first compatibility relation and the lower signs refer to
the second.

Problem 3.5

Show that the system of Cauchy-Riemann equations

~+~ =0
ax ay

~-~=o
ax ay

is of an elliptic nature.

Problem 3.6

Consider the one-dimensional Euler equations:

ap ap au
-+u-+p-=Oat ax ax

~+u~+!~=o
at ax p ax

aH aH I ap
-+u-=--
at ax pat

Introduce the isentropic assumption, with c the speed of sound:

ap 2
-=c

ap
Replace the third equation by an equation on the pressure by applying the perfect gas
laws and the definition of H. Obtain the equation

ap ap 2au
-+u-+pc -=0
at ax ax

Write the system in matrix form for the variable vector:

I,; I
Show that the system is hyperbolic and has the eigenvalues

0(1) = U, 0(1) = u + c, 0(3) = U - c

Obtain the left and right eigenvectors.
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Problem 3.7
Show that the one-dimensional Navier-Stokes equation without pressure gradient
(known as the 'viscous' Burger's equation)

au au a2u
-+u-=a-
at ax ax2

is parabolic in x, t.
Hint: Write the equation as a system, introducing v = au/ax as a second variable.
Apply equation (3.2.22) and show that the matrix is not of rank 2.

Problem 3.8

Consider the system

~+.!.~+2.!!.=0
at 2 ax ax

~+~+.!.2.!!.=0at ax 2 ax
(a) Write the system in matrix form (3.4.2) and obtain the matrix A:

au au . l u
l-+A -=0 with u=

at ax v
(b) Find the eigenvalues of A and show that the system is hyperbolic.
(c) Derive the left and right eigenvectors and obtain the matrix L which diagonalizes

A. Explain why the left and right eigenvectors are identical.
(d) Obtain the characteristic variables and the compatibility relations.
Hint: The eigenvalues of A are Al = 3/2 and A2 = - 1/2. The matrix L has the form

L-~ I I 1
1-J2 1 -1

The characteristic variables are WI = (u + v)/J2 and W2 = (u - v)/J2. The compat1bility

relations are

a(u + v) + ~ a(u + v) = 0
at 2 ax

a(u - v) _.!. a(u - v) = 0
aJ 2 ax

Problem 3.9

Consider the stationary, invisied equations for an incompressible fluid

~+~=o
ax ay

au au I ap
u-+v-=---

ax ay pax
av ov 1 op

u-+v-=---
ox ay pay

Show that this system is hybrid, having one real and two complex eigenvalues. It

I
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Hint: Consider the variable vector

u~G)
and write the system as

A~+B~=Oax ay
The determinant (A + B>') has the eigenvalues - vI u and :t 1= :t Fi
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PART II: BASIC DISCRETIZA TION

TECHNIQUES

The definition of a computational approach involves several steps leading
from an initial mathematical model to a final numerical solution. The first
step, discussed in the previous chapters, is the selection of a level of
approximation to the physical problem to be solved, dependent on the
accuracy required as much as on the computational power available. The
second step is the choice of the discretization method of the mathematical
formulation and involves two components, the space discretization and the
equation discretization. The space discretization consists of setting up a mesh
or a grid by which the continuum of space is replaced by a finite number of
points where the numerical values of the variables will have to be determined.
It is intuitively obvious that the accuracy of a numerical approximation will be
directly dependent on the size of the mesh, that is, the better the discretized
space approaches the continuum, the better the approximation of the numeri-
cal scheme. In other words, the error of a numerical simulation has to tend to
zero when the mesh size tends to zero, and the rapidity of this variation will be
characterized by the order of the numerical discretization of the equations.

On the other hand, for complex geometries the solution will also be
dependent on the form of the mesh, since in these cases we will tend to develop
meshes which are adapted to the geometrical complexities, as for flows along
solid walls, and the mesh form and size will vary through the flow field.
Therefore the generation of meshes for complex geometries is a problem
whose importance increases with the space dimension, making this aspect a
most important one in three-dimensional calculations along complex bodies
such as aircrafts. In recent years methods have been, and are being, developed
in order to generate meshes adapted to arbitrary geometries. An excellent
review of available numerical mesh generation techniques can be found in

Thompson (1984).
Once a mesh has been defined the equations can be discretized, leading to

the transformation of the differential or integral equations to discrete algebraic
operations involving the values of the unknowns at the mesh points. The basis
of all numerical methods consists of this transformation of the physical
equations into an algebraic, linear or non-linear, system of equations. For
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time-dependent problems an intermediate step is obtained, namely a system of
ordinary differential equations (ODEs) in time which, through an integration
scheme in time, will ultimately lead to an algebraic system for the unknowns at
a given time level.

The introduction of the additional time variable allows the application of a
whole class of schemes which form the body of the theories of numerical
solutions of systems of ordinary differential equations. Since these schemes
differ generally from those applied to solve algebraic systems obtained from
time-independent space discretizations it is important to distinguish time-
dependent from time-independent formulations. For physical time-dependent
problems, such as those associated with transient flow behaviour or those
connected to time-varying boundary conditions, there is obviously no alter-
native to the use of a time-dependent mathematical model whereby, in
addition, time accuracy of the numerical solution is required.

However, with stationary problems an alternative exists, and the user can
decide to work with a time-independent formulation, or apply a time-
dependent model, and follow the numerical solution in time until the steady
state is reached. This last family of methods is often called time marching or
pseudo-unsteady, since the time accuracy is nQt required in order to reach the
steady state in the smallest ~ossible number of time steps. In this case the
numerical schemes will be taken from the family of methods for the solution
of systems of ODEs in time, while in the former the numerical solution
techniques will have to rely on the methods for solving algebraic systems of
equations (in space).

Although the discretization of the time derivatives ultimately leads to an
algebraic system of equations for the unknowns at a given time step as a
function of the variables at previous time steps the structure of these algebraic
systems is generally much simpler than that obtained from time-independent
formulations. We distinguish two families of methods, the explicit and the
implicit methods. In explicit methods the matrix of the unknown variables at
the new time is a diagonal matrix, while the right-hand side of the system is
dependent only on the flow variables at the previous times. This leads therefore
to a trivial matrix inversion and hence to a solution with a minimal number of
arithmetic operations for each time step. However, this advantage is counter-
balanced by the fact that stability and convergence conditions impose severe
restrictions on the maximum admissible time step. While this might not be a
limitation for physical unsteady problems it leads to the necessity of a large
number of time steps in order to reach the steady-state solution corresponding
to a physical time-independent problem.

In implicit methods the matrix to be inverted is not diagonal, since more
than one set of variables are unknown at the same time level. In most cases,
however, the structure of the matrix will be rather simple, such as block
pentadiagonal, block tridiagonal or block bidiagonal, allowing simple
algorithms for the solution of the system at each time step, although the
number of operations required will be higher when compared with explicit
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methods. This is compensated by the fact that many implicit methods have, at
least for linear problems, no limitation on the time step, and hence a smaller
number of iterations will be needed to reach the steady state.

In time-independent formulations the space discretization will lead to a
system of linear or non-linear algebraic equations. A large number of methods
are available for the solution of linear algebraic systems and much research
work is still being performed in this field, since this step is most important for
the determination of the total computational work involved. This effort is
measured in either the total computer time or the number of iterations
necessary to obtain a given level of accuracy.

Two families of methods for solving algebraic systems can be distinguished:
direct and iterative methods. The former can be defined as leading to the
solution of a linear system in one step, while the latter will require many
iterative steps. For non-linear problems all approaches will necessarily be
iterative, being either direct-iterative or inserted within one of the basically
linear iterative methods.

It is important to observe that the distinction between the two large classes
of methods, namely the pseudo-unsteady approach and the time-independent
formulation, is not as great as one might suspect from the definitions given
above. Indeed, as will be discussed later, a bridge can be defined between the
two formulations, and it will be shown in Chapter 12 that any iterative method
for the solution of a linear, or non-linear, algebraic system can be written in a
pseudo-unsteady formulation of the same problem, whereby the iteration
number plays the role of an artificial time index.

Convergence acceleration techniques linked with iterative methods have
recently been developed and have led to dramatic improvements in conver-
gence rates. They are known as preconditioning and multigrid methods.

Finally, these different steps can be strongly interacting on each other. The
solution techniques for the algebraic system can be greatly influenced by the
type of discretization chosen as well as by the characteristics of the physical
properties of the flow system. This will appear clearly in various examples in
the following chapters and in particular for the discretization of hyperbolic
systems such as the Euler equations. Table 11.1 gives in condensed form an
overvie;.v of the various approaches that can be taken. To each of the various
options represented in this table corresponds an extremely large number of
possible choices. Starting from the discretization technique, finite difference or
finite element methods, each of these possibilities still allows an unquantifiable
number of variants. In addition, as will also appear from the Chapters 11 and
12, the number of possibilities for either the resolution of the system of ODE
in time or for the solution of the algebraic system of equations is considerable.
This explains the large variety of methods available, or still to be developed, in
order to solve numerically a given physical flow problem.

The various schemes and resolution techniques are not necessarily equiv-
alent, either in their accuracy or in their performance characteristics, expressed
as the central processor time required to obtain the solution at the desired level
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of accuracy. Therefore in order to evaluate a selected scheme in terms of
accuracy, stability, convergence properties and operation count we can rely on
various techniques which will be summarized in Chapters 7-10.

In the following three chapters the three most important tools for the space
and time discretization of differential operators will be presented.. The finite
difference (FD) method (Chapter 4) is probably the most popular technique
today, while the finite element (FE) method (Chapter 5) is gaining increasing
popularity for a variety of problems of fluid mechanics. The finite volume
(FV) method (Chapter 6) by which the integral form of the conservation laws
are discretized can be treated as an independent method due to its large
flexibility on arbitrary meshes. For all three methods we will summarize basic
properties and methodology in order to allow the reader to choose a
discretization method and adapt it to his problem. As will be clear from the
following, a quasi-unlimited number of options are available and a large
subset of these can be chosen with equivalent properties of convergence and

accuracy.
In summary, the following steps have to be defined in the process of setting

up a numerical scheme:

(1) Selection of a discretization method of the equations. This implies
selection between finite difference, finite element or finite volume methods
as well as selection of the order of accuracy of the spatial and, eventually,
time discretization.

(2) Selection of a resolution method for the system of ordinary differential
equations in time, for the algebraic system of equations and for the
iterative treatment of eventual non-linearities.

(3) Analysis of the selected numerical algorithm. This step concerns the
analysis of the 'qualities' of the scheme in terms of stability and conver-
gence properties as well as investigation of the errors generated.

Step (1) will be discussed in Chapters 4-6, step (3) in Chapters 7-10 and step
(2) in Chapters 11 and 12.

Table 11.2 gives a synoptic overview of the above-mentioned

components.

v

'\



Chapter 4

The Finite Difference Method

The finite difference method is based on the properties of Taylor expansions
and on the straightforward application of the definition of derivatives. It is
perhaps the simplest method to apply, particularly on uniform meshes, but it
requires a high degree of regularity of the mesh. In particular, the mesh must
be set up in a structured way, whereby the mesh points, in an n-dimensional
space, are located at the intersections of n family of rectilinear or curved lines.
These curves appear as a form of numerical coordinate lines and each point
must lie on one, and only one, line of each family.

Finite difference formulas for first and higher order derivatives can be
defined in a general manner and some of their properties are introduced for a
one-dimensional space in section 4.1 to 4.3, under the assumption of a
uniform mesh. Section 4.4 deals with two-dimensional extensions and section
4.5 introduces some applications to non-uniform meshes.

4.1 THE BASICS OF FINITE DIFFERENCE METHODS

The finite difference approximation is the oldest of the methods applied to
obtain numerical solutions of differential equations, and the first application is
considered to have been developed by Euler in 1768. The idea of finite
difference methods is actually quite simple, since it corresponds to an estima-
tion of a derivative by the ratio of two differences according to the definition
of the derivative.

For a function u(x) the derivative at point x is defined by

ux= ( ~ ) =lim u(x+~x)-u(x) (4.1.1)

ax I1x--+O ~x

If ~x is small but finite the expression on the right-hand side is an
approximation to the exact value of Ux. The approximation will be improved
by reducing ~x, but for any finite value of ~x an error (the truncation error) is
introduced which goes to zero for ~x tending to zero. The power of ~x with
which this error tends to zero is called the order of the difference approxima-
tion, and can be obtained from a Taylor series development of u(x + ~x)
around point x. Actually, the whole concept of finite difference approxima-
tions is based on~the properties of Taylor expansions. Developing u(x + ~x)
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we obtain

~x2u(x+ ~x)= u(x) + ~xux(x)+2 UXX(x) + ... (4.1.2)

and therefore, to the highest order in ~x,

u(x + ~x) - u(x) ~x
= ux(x)+- UXX(x) + ... (4.1.3)

~x 2

This approximation for ux(x) is said to be first order in ~x, and we write

u(x + ~x) - u(x) = ux(x) + O(~x) (4.1.4)

~x

indicating that the truncation error O(~x) goes to zero like the first power in
~x.

A very large number of finite difference approximations can be obtained for
the derivatives of functions and a general procedure will be described in the
following based on formal difference operators and their manipulation.

4.1.1 The properties of difference formulas

Let us consider a one-dimensional space, the x-axis, where a space discretiza-
tion has been performed such that the continuum is replaced by N discrete
mesh points x;, i = 1, ..., N(Figure 4.1.1). We will indicate by U; the values of
the function u(x) at the points x; (that is, U; = u(x;» and consider that the
spacing between the discrete points is constant and equal to ~x. Without loss
of generality we can consider that x; = i ~x, and this point will also be referred
to as 'point x;' or 'point i'.

The following finite difference approximations can be defined for the first
derivative (ux); = (au/aX)X=Xi'

(au) U;+l - U;
(ux);= - =+O(~x) (4.1.5)

ax X= Xi ~x

(au) u; - U;-l
(UX); = - = + O(~x) (4.1.6)

ax; ~x

With respect to the point x = x; the first formula is called a forward difference,
while the second is a backward difference, both being first-order approxima-
tions to (ux);. Both are considered as one-sided difference formulas.

A second-order approximation is obtained from the central difference:

(ux);= Uj+l- U;-I+O(~X2) (4.1.7)

2~x

as is easily verified by a Taylor expansion of Uj+ 1 around point Xi. These three
approximations are represented geometrically in Figure 4.1.1.

The forward difference formula for (ux); can be considered as a central

\\!
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Forward
y difference

Bock
diffe

y = u(x)

u

~x ~x x

i -1 i i+1

Figure 4.1.1 Geometrical interpretation of difference formulas for
first-order derivatives

difference with respect to the point

Xi+Xi+1
Xi+I/2 = (4.1.8)

2

leading to a second-order approximation for the derivative (Ux)i+ 1/2 in this
point. This is an important property which is often used in computations due
to its compact character. The same formula (4.1.5) is either a first-order
forward difference for (Ux)i or a second-order central approximation for
(Ux)i+ 1/2 but involving only the same two mesh points i and (i + I). We
therefore have

(au) Ui+ 1 - Ui 2 4(Ux)i+I/2 = - = + O(~x ) ( .1.9)
ax i+I/2 ~X

and similarly at (i - 1/2):

U.- u. 1 2(Ux)i-I/2= I I-+O(~X) (4.1.10)
~X

Compared with formulas (4.1.5) and (4.1.6) for (Ux)i we have gained an order
of accuracy by considering the same expressions as approximations for the
mid-points (i+ 1/2) or (i-I/2), respectively.

4.1.2 Difference formulas with an arbitrary number of points

Actually, difference formulas for the first derivative (Ux)i can be constructed
involving any number of adjacent points, with the order of the approximation
increasing with the number of points. In any numerical scheme a balance will
have to be defined between the order of accuracy and the number of points
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simultaneously involved in the computation. The bandwidth of the algebraic
system which has finally to be solved n order to obtain the solution Ui is
generally proportional to the number of simultaneous points involved. For
instance, a one-sided, second-order difference formula for (Ux)i, containing
only the upstream points i - 2, i - 1, i, can be obtained by an expression of the

form

(UX)i=aui+bui-l+CUi-2+0(Ax2) (4.1.11)
Ax

The coefficients (a, b, c) are found from a Taylor expansion of Ui-2 and Ui-l

around Ui. Writing

2 (2Ax)3Ui-2 = Ui - 2Ax(Ux)i + 2Ax (Uxx)i - ~ (Uxxx)i + ... (4.1.12)

AX2 AX3Ui-l = Ui - AX(Ux)i +2 (Uxx)i - 6 (Uxxx)i + ... (4.1.13)

and multiplying the first equation by c, the second by b and adding aUi leads to

CUi-2 + bUi-l + aUi
A 2 (4.1.14)

= (a + b + C)Ui - Ax(2c + b)(Ux)i + 1- (4c + b)(Uxx)i + 0(AX3)

Hence identifying with equation (4.1.11) we obtain the three conditions

a+b+c=O
(2c+b)= -1 (4.1.15)

4c + b = 0

and the second-order accurate one-sided formula:

(ux)i=3ui-4ui-l+Ui-2+0(Ax2) (4.1.16)
2Ax

This is a general procedure for obtaining finite difference formulas with an
arbitrary number of points and an adapted order of accuracy. In general, a
first-order derivative at mesh point i can be made of order of accuracy p by
an explicit formula such as equation (4.1.11), involving (p + 1) points. For
instance, a formula involving the forward points i + 2, i + 1, i is

(Ux)i= -3Ui+4Ui+l-Ui+2+0(Ax2) (4.1.17)
2Ax

Higher orders of accuracy can also be obtained with a reduced number of
mesh points at the cost of introducing implicit formulas (see Section 4.3).

Finite difference approximations of higher-order derivatives can be obtained
by repeated application of first-order formulas. For instance, a second-order
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approximation to the second derivative (Uxx)i is obtained by

( ) - = (~ ) - (Ux)i+l- (Ux)iUxx I - ~ 2 - A
ux i ~x

(4.1.18)
_Ui+I-2ui+Ui-l O(A 2)- 2+ X

~x

where backward approximations for (Ux)i+l and (Ux)i are selected.
The symmetrical, central difference formula is of second-order accuracy, as

can be seen from a Taylor expansion. We obtain indeed.

Ui+I-2ui+Ui-l_ ( ) - ~ (~ ) ... (4119)~X2 - Uxx 1+ 12 OX4 + . .

As with equation (4.1.11), we can define formulas with an arbitrary number of
points around point i by a comQination of Taylor series developments. For
instance, an expression such as equation (4.1.11) for the second derivative Uxx
will lead to the conditions

a+b+c=O
2c+ b = 0 (4.1.20)

4c + b = 2

and the one-sided, backward formula for the second derivative:

( ) Ui - 2Ui-l + Ui-2
1 2 )Uxx i = 2 + Ax' Uxxx + ... (4. . 1

~x

This one-sided formula is only first-order accurate at point i. Note also that
this same formula is a second-order accurate approximation to the second
derivative at point (i - 1), as can be seen by a comparison with the central
formula (4.1.18).

The above procedure, with undetermined coefficients, can be put into a
systematic framework in order to obtain finite difference approximations to all
derivatives with a preselected order of accuracy. In order to achieve this a
formalization of the relations between differentials and difference approxima-
tions is to be defined via the introduction of appropriate difference operators.

4.2 GENERAL METHODS FOR FINITE DIFFERENCE FORMULAS

General procedures developed in order to generate finite difference formulas to
any order of accuracy and a general theory can be found in Hildebrand (1956).
This approach is based on the definition of the following difference operators.

Displacement operator E:

EUi = Ui+ I (4.2.1a)
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Forward difference operator 0 + :

O+u; = U;+I - U; (4.2.1b)

Backward difference operator 0-:

o-u;=U;-U;-1 (4.2.1c)

Central difference operator 0:

ou; = U;+ 1/2 - U;-1/2 (4.2.1d)

Central difference operator 5:

5u;=!(u;+I-u;-I) (4.2.1e)

A veraging operator p.:

p.u;=!(U+I/2+ U-I/2) (4.2.1f)

Differential operator D:

auDu = Ux = ax (4.2.1g)

From these definitions some obvious relations can be defined between these
operators; for example,

0+ = E- 1 (4.2.2)
0- = 1 - E-I (4.2.3)

where the inverse displacement operator E-I is introduced, defined by

E-IU;= U;-I (4.2.4)

This leads to the following relations:

0- = E-I 0+ (4.2.5)

and

0+ 0- = 0- 0+ = 0+ - 0- = 02 (4.2.6)

With the general definition, n being positive or negative,

En U; = U;+n (4.2.7)

we also have

0 = EI/2 - E-I/2 (4.2.8)

p.=!(EI/2+E-I/2) (4.2.9)

and

o=!(E-E-I) (4.2.10)

Any of the above difference operators taken to a given power, n, is
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interpreted as n repeated actions of this operator. For instance,

0+2 = 0+0+ = E2 - 2E+ 1 (4.2.11)

0+3 = (E- lY = E3 - 3E2 + 3E-l (4.2.12)

4.2.1 Generation of difference formulas for first derivatives

The key to the operator technique for generating finite difference formulas lies
in the relation between the derivative operator D and the finite displacement
operator E. This relation is obtained from the Taylor expansion

~X2 ~X3u(x+ ~x)= u(x)+ ~xux(x)+-;- uxx(x)+- Uxxx(x) + ... (4.2.13)
2. 3!

or, in operator form,

( (~XD)2 (~XD)3 )Eu(x)= 1 + ~xD+ 2!+ 3!+ ... u(x) (4.2.14)

This last relation c;:an be written formally as

Eu(x) = e.1XDu(x) (4.2.15)

and therefore we have symbolically

E = e.1xD. (4.2.16)

This relation has to be interpreted as giving identical results when acting on
the exponential function eQx and on any polynomial of degree n. In the latter
case the expansion on the right-hand side has only n terms and therefore all
the expressions to be defined in the following are exact up to n terms for
polynomials of degree n. The basic operation is then to use equation (4.2.16) in
the inverse way, leading to

~xD=lnE (4.2.17)

Forward differences

Formulas for forward differences are obtained by introducing relation (4.2.2)
between E and the forward operator 0+. We obtain, after a formal develop-
ment of the In function,

~xD = In E= In(1 + 0+)
+ 0+2 0+3 0+4 (4.2.18)

=0 --+---+...
2 3 4

The order of accuracy of the approximation increases with the number of
terms kept in the right-hand side. The first neglected term gives the truncation
error. For instance, keeping the first term only leads to the first-order formula
(4.1.5) and a truncation error equal to (~x/2uxx). If the first two terms are
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considered we obtain the second-order formula (4.1.17) with the truncation
error ~x3/3uxxx:

( ) .=D __-3Ui+4ui+I-Ui+2 ~x2 (4219)Ux I - U, - 2~x + 3 Uxxx . .

Hence this relation leads to the definition of various forward finite
difference formulas for the first derivative with an increasing order of
accuracy. Since the forward ciifference operator can be written as
0+ = ~xux + 0(~X2), the first neglected operator o+n is of order n, showing
that the truncation error is O(~Xn-I). I

Backward Differences

Similarly, backward difference formulas with increasing order of accuracy can
be obtained by application of relation (4.2.3):

~xD = In E = -In(1 - 0-)

- 0-2 0-3 0-4 (4.2.20)
=0 +-+-+-+...

2 3 4
To second-order accuracy we have

( )- - D . - 3Ui - 4Ui-1 + Ui-2 ~x2
(4 2 21)Ux I - U, - 2~x + 3 Uxxx . .

Central differences

Central difference formulas are obtained from equation (4.2.8):

~ (E 1/2 E-1/2 )uUi = 'Ui+ 1/2 - Ui-1/2 = - Ui

and therefore

0 = e~xDl2 - e- ~xD12 = 2 sinh (~) (4.2.22)

which, through inversion, leads to

~xD = 2 sinh - I 0/2 = 2[~ - ~ (~)3 + ~ (~)S

2 2.3 2 2.4.5 2

1 . 3 . 5 (0)7 )- 2.4.6.7 "2 + ... (4.2.23)

03 30S 507
=0--+---+...

24 640 7168

This formula generates a family of central difference approximations to the
first-order derivative (Ux)i based on the values of the function U at half-integer
mesh point locations. By keeping only the first term we obtain, with second-
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order accuracy,

( ) .- Ui+1/2 - Uj-1/2_~
(4 2 24)Ux I - ilx 24 Uxxx . .

Keeping the first two terms we obtain a fourth-order accurate approximation:

( ) . = - Uj+3/2 + 27Uj+ 1/2 - 27uj-1/2 + Uj-3/2 ~ A 4 (~ ) (4 2 25)Ux I 24ilx + 640 ~x 'dx5 . .

In order to derive central differences involving only integer mesh points we
could apply the above procedure to the operator 5. From equation (4.2.10) we
have

5 =!<£ - £-1) = !(e.1xD - e-.1XD) = sinh(ilxD) (4.2.26)

and therefore, as a function of 5,

ilxD = sinh -15

(- 53 3 -5 ) (4.2.27) = 0--+0 +...

6 2.4.5

This formula can be used to replace equation (4.2.23) for the central
difference at Xi. However, although the first term is the second-order central
difference approximation (4.1.7) the next one leads to a fourth-order formula
for (ux)j, involving the four points i - 3, i-I, i + 1, i + 3. This is of no interest
for numerical computations, sins:e we would expect a fourth-order formula for
(ux)j to involve the points i - 2, i-I, i + 1, i + 2. This can be obtained from
the identity

p. 2 = 1 + 02/4 (4.2.28)

After multiplication of equation (4.2.23) by

( 02) -1/2; ( 02 3 04 5 06 )1 =p. 1 +- =p. 1--+---+ ... (4.2.29)

4 8 128 1024

we obtain the relation

( 1 1222 )ilxD=p. 0--03 +-05 - ...
3! 5!

(4.2.30)
-( 02 22 4 22.32 6 )=0 1--+-0 --0 +...

3! 5! 7!

Hence we obtain the following second- and fourth-order accurate central
difference approximations to the derivative (ux)j with integer mesh point
values:

( )._Uj+I-Uj-I_~ (4231)Ux I - 2ilx 6 Uxxx . .
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and

(u ) . = - Ui+2 + 8Ui+ 1 - 8Ui-l + Ui-2 ~ (~ ) (4 2 32)x , 12~x + 30 OX5 . .

4.2.2 Higher-order derivatives

Applying the operator technique an unlimited number of finite difference
formulas can be applied to obtain second-order and higher-order derivatives.
From equation (4.2.18) we have the one-sided, forward difference formula, see
for instance Ames (1977),

(onu) 1 -;-ii = nnUi = -n [In(1 + 0+)] nUi
aX i ~X

(4.2.33)

= ~ [ o+n - ~ o+(n+l)+ n(3n + 5) 0+(n+2)
~xn 2 24

- n(n + 2)(n + 3) 0+(n+3) + ...] u. 48 '

In terms of the backward difference operator 0- we have

(~ ) = - ~ [In(l-o-)]nui
oxn i ~xn

1 ( - 0-2 0-3 )n
=~ 0 +2+3+ ... Ui (4.2.34)

= ~ [ o-n + ~ o-(n+l) n(3n + 5) 0-(n+2)
~xn 2 + 24

+ n(n + 2)(n + 3) 0-(n+3) + ...
] Ui

48

Central difference formulas for higher-order derivatives can also be obtained

through
n n ( 2 . h -1 O)n

Ui = ~ Sin ":2 Ui

=~
[o-~+~-~+ ...] n U.

~xn 24 640 7168 I

(4.2.35)
= ~ on[1- ~ 02 + ~ (22 + 5n)04

~Xn 24 64 90

-~ (~+~+(n-l)(n-2» )06+... ] u.45 7 5 35 I



177

For n even, this equation generates difference formulas with the function
values at the integer mesh point. For n uneven, the difference formulas involve
points at half-integer mesh points. The reverse is true for the following
difference equation.

In order to involve only points at integer values of i for n uneven, using
equation (4.2.28), we define

Dn ,It (2 . h - 1 0)n
U; = [I + (02/4)] 1/2 ~ sm "2 U;

(4.2.36)
=II~ [ 1-~02+5n2+52n+13504+...

] u.

,.. ~xn 24 5760 I

Second-order derivative

For instance, second-order derivative formulas are

( ) I (~+2 ~+3 II ~+4 5 ~+5 )Uxx ; = ~ u - u + 12 u -"6 u + ... U; (4.2.37)

(uxx); = b (0-2 + 0-3 + H 0-4 + ~ 0-5 + ...) U; (4.2.38)

I ( 2 04 06 08 )(uxx);=~ 0 -12+90-560+'" U; (4.2.39)

,It ( 2 504 259 6 8 )(Un); = ~ 0 - 24 + 5760 0 + O(~x ) U; (4.2.40)

These equations define four families of difference operators for the second
derivative to various orders of accuracy. By maintaining only the first term we
obtain the following difference formulas.

Forward difference: first-order accurate

I(uxx); = ~ (U;+2 - 2u;+ 1 + u;) - ~x Uxxx (4.2.41)

Backward difference: first-order accurate

I(uxx); = ~ (u; - 2u;-1 + U;-2) + ~x Uxxx (4.2.42)
~x

Central difference: integer points-second-order accurate

I ~X2 (O4U)(uxx);=~ (u;+1-2u;+ u;-I)-12 a? (4.2.43)
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Central difference: half-integer mesh points-second-order accurate

1 5 2 (iJ4U)(Uxx)i = U? (Ui+3/2 - Ui+ 1/2 - Ui-I/2 + Ui-3/2) - 24 ~x a? (4.2.44)

With the exception of the last, these difference approximations for the second
derivative involve three mesh points like the first derivatives. The one-sided
difference formulas are only first-order accurate, while the central differences
always lead to a higher order of accuracy.

By keeping the two first terms of the above formulas we obtain difference
formulas with a higher order of accuracy:

Forward difference: second-order accurate

1 11 2 (iJ4U)(Uxx)i ="::;i:X2 (2Ui - 5Ui+ 1 + 4Ui+2 - Ui+3) + 12 ~x a? (4.2.45)

Backward difference: second-order accurate

1 11 2 (iJ4U)(Uxx)i ="::;i:X2 (2Ui - 5Ui-1 + 4Ui-2 - Ui-3) - 12 ~x a? (4.2.46)

Central difference: integer points-fourth-order accurate

1 v
(Uxx)i = ~ (- Ui+2 + 16ui+1 - 30Ui + 16ui-1 - Ui-2)

~x4 (iJ6U)+90 ~ (4.2.47)

Central difference: half-integer mesh points-fourth-order accurate

1(Uxx)i = ~ (- 5Ui+S/2 + 39ui+3/2 - 34Ui+ 1/2 - 34ui-l/2

259 4 (iJ6U)+ 39Ui-3/2 - 5Ui-S/2) + 5760 ~x aX6 (4.2.48)

The last formula is of little practical use, since it requires six mesh points to
obtain a fourth-order accurate approximation to the second derivative at point
i, while formula (4.2.47) requires only four mesh points.

A more complex operator, often occurrlng in second-order differential
problems, is iJx[k(x)iJxu]. A central difference formula of second-order
accuracy with three mesh points is given by

fx [k(X) fx] Ui = b 0+ (ki-I/2 0-) Ui + O(~x2) (4.2.49)
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which takes the explicit form

~ [k(X)~] Ui = k+1/2~~i - Ui)- ki-1/2~~-;- Ui-l) + 0(.1x2) (4.2.50)

An equivalent formula is obtained by inverting the forward and backward

operators:

~[k(X)~] Ui=PO-(ki+1/20+)Ui (4.2.51)

leading to the same expression (4.2.50).

Third-order derivatives

Approximations for third-order derivatives are obtained from the above
general expressions. To the lowest orders of accuracy we have the following
difference formulas.

Forward difference

(O3U )a? i = (Uxxx)i

(4.2.52)
1 .1x (O4U )= ~ (Ui+3 - 3Ui+2 + 3Ui+ 1 - Ui) - 2 a7

or with second-order accuracy:

1(Uxxx)i = UX3 (- 3Ui+4+ 14ui+3 - 24ui+2 + 18ui+ 1 - 5Ui)

21 2(OSU)+ 12.1x -axs (4.2.53)

Backward difference
I .1x (O4U)(Uxxx)i = ~ (Ui - 3Ui-l + 3Ui-2 - Ui-3) + _

2 ~ (4.2.54)
.1x ox

or with second-order accuracy:

1
(Uxxx)i = _2 3 (5Ui - 18ui-l + 24ui-2 - 14ui-3 + 3Ui-4)

.1x

- N .1x2 (~) (4.2.55)

Central difference: half-integer points

1 .1x2 (OSu)(Uxxx)i = ~ (Ui+3/2 - 3Ui+ 1/2 + 3Ui-1/2 - Ui-3/2) - 8 -axs (4.2.56)
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This is a second-order accurate approximation to the third derivative, and a
fourth-order accuracy is obtained from the following:

1(Uxxx)i = ~ (- Ui+SI2 + 13ui+3/2 - 34ui+ 1/2 + 34ui-1/2 - 13ui-3/2
8~x

37 4 ( O7U )+ Ui-SI2) + - ~x -;-7 (4.2.57)

1920 ux

Central difference: integer mesh point

1 1 2(OSU)(Uxxx)i = ~ (Ui+2 - 2Ui+ 1+ 2Ui-1 - Ui-2) - '4 ~x -;j;S (4.2.58)

or with fourth-order accuracy:

1(Uxxx)i = ~ (- Ui+3 + 8Ui+2 - 13ui+ 1+ 13ui-1 - 8Ui-2 + Ui-3)
8~x

-2- ~ 4(~ ) (4.2.59) + 120 x ox7

Fourth-order derivatives

To the lowest order of accuracy we have the following approximations.

Forward difference: first-order accurate

(O4U) 1 (OSu)~ = ~ (Ui+4 - 4Ui+3 + 6Ui+2 - 4Ui+ 1+ Ui) - 2~x -;s (4.2.60)
ox i ~x uX

Backward difference: first-order accurate

(O4U) 1 (OSu)~ = ~ (Ui - 4Ui-1 + 6Ui-2 - 4Ui-3 + Ui-4) + 2~x -s (4.2.61)
ox i ~x ox

Central difference: second-order accurate

(O4U) 1 ~X2 (O6U)~ = ~ (Ui+2 - 4Ui+ 1+ 6Ui - 4Ui-1 + Ui-2) - -
6 -;-6 (4.2.62)

ox i ~x uX

Obtaining these formulas is left as an exercise to the reader (see Problems

4.13-4.15).

4.3 IMPLICIT FINITE DIFFERENCE FORMULAS

Implicit formulas are defined as expressions where derivatives at different
mesh points appear simultaneously. Their essential advantage comes from the
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high order of accuracy which is generated when derivatives at different mesh
points are related to each other. The price to be paid is that we generate an
algebraic system for the approximated derivatives which cannot be written
in an explicit way. The above expressions can be used to generate these
high-order implicit formulas for the derivative operators as follows.

For instance, equation (4.2.30) gives, with a fourth-order accuracy,

.1XD=.uO(I-~) +0(.1x5) (4.3.1)

or by a formal operation, to the same order of accuracy:

.1xD = -~r- / + 0(.1x5) (4.3.2)
1 + (0 6)

This formula is a rational fraction or P ADE differencing approximation
(Kopal, 1961).

The interpretations of these two last formulas are quite distinct from each
other. Equation (4.3.1), applied to Ui leads to the fourth-order formula
(4.2.32), while equation (4.3.2) is to be interpreted after multiplication of both
sides by the operator (1 + 02/6):

( 02) 1 1+6 D=6[(uX)i+I+4(uX)i+(UX)i-I]

(4.3.3)= Ui+1 - Ui-1 + 0(.1x4)

2.1x

The left-hand side has an implicit structure, and this formula has the
important property of involving only three spatial points while being of the
same fourth order as equation (4.2.32), which requires five mesh points. These
schemes are called sometimes Hermitian schemes, and can also be obtained
from a finite element formulation (see Chapter 5).

Similar procedures can be applied to generate other implicit formulas; for
instance, equation (4.2.18) leads to

0+2 ( 0+) 0+ .1xD=o+ -T+0(.1x3)=0+ 1-2 + 0(.1x3) = 1 + (0+/2) +0(.1x3)

(4.3.4)
After multiplication by 1 + 0+ /2 we obtain the two-point implicit relation, of
second-order accuracy,

1 U"+I-U" 2-[(Ux)i + (Ux)i+ I] = I '+ O(.1x ) (4.3.5)

2 .1x

Formulas such as (4.3.3) or (4.3.5) do not permit the explicit determination
of the numerical approximations to the derivatives (Ux)i. Instead they have to
be written for all the mesh points and solved simultaneously as an algebraic
system of equations for the unknowns (Ux)i, i = 1, ..., N.
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For instance, the fourth-order implicit approximation (4.3.3) for (Ux)i will
be obtained from the solution of the tridiagonal system:

. . .
. . .

1 4 1 (Ux)i-l 3 Ui-Ui-2
1 4 1 . (Ux)i =- Ui+l-Ui-l

1 4 1 (Ux)i+l .1x Ui+2 - Ui

.. .

while equation (4.3.5) leads to a bidiagonal system:

. . . 0. . . .
1 1 (Ux)i-l 2 Ui-Ui-l

1 1 (Ux)i = - Ui+ 1 - Ui

1 1 (UX)i+l.1x Ui+2-Ui+l

.. .
As a consequence, the numerical value of (Ux)i, obtained as a solution of the
above systems, is influenced by all the mesh point values Ui. This explains why
these formulas are of a higher order of accuracy than the corresponding
explicit formulas involving the same number of mesh points. When applied to
practical flow problems the function values and the derivatives are considered
as unknowns. They are obtained as solutions of an algebraic system formed by
adding the basic equations to be solved to the above implicit relations.

Along the same lines, we obtain implicit formulas for second-order deriva-
tives with a higher order of accuracy and a number of mesh point values
limited to two or three. From equation (4.2.39) we have, to fourth-order

accuracy,

(Uxx)i = b 02( 1 -~) Ui + O(.1x4)

(4.3.6)
1 02Ui 4= ~ 1 + (02/12) + O(.1x )

Multiplying formally by [1 + (02/12)] we obtain the implicit, compact expres-
sion for the second-order derivative:

(1 +~) (Uxx)i = b 02Ui + O(.1x4) (4.3.7a)

or

~ [(Uxx)i+ 1 + 10(Uxx)i + (Uxx)i-l] = b (Ui+l - 2Ui + Ui-l) + O(.1x4)

(4.3.7b)



183

Here again a tridiagonal system is to be solved in order to calculate (Uxx)i from
the mesh point values Ui.

A one-sided relation of second-order accuracy can be obtained from
equation (4.2.37), leading to

(Uxx)i = ~ 0+ (1 - 0+2) Ui + 0(~x2)
~x

(4.3.8)
1 O+Ui 0( '\ 2 )= - + ~X

~x2 1 + 0+2

After multiplication by (1 + 0+2) we obtain

1 2(Uxx)i+2 - 2(Uxx)i+ 1 + (Uxx)i = -z (Ui+ 1 - Ui) + O(~x ) (4.3.9)
~x

There is no way of obtaining an implicit relation for the second derivatives
with only values at the two mesh points i and i + 1 without also involving
first-derivative values (Hirsh, 1975).

4.3.1 General derivation of implicit finite difference formulas for first and
second derivatives

Implicit finite difference relations for first and second derivatives have been
derived by various methods and given a variety of names. Many can be found
in Collatz (1966), under the names of the Mehrstellen or Hermitian methods
by analogy with Hermitian finite elements. We have already mentioned Pade
approximations, and recently a large number of applications to the solution of
fluid-mechanical equations have been developed by Krause (1911); Hirsh
(1975) as compact methods; Rubin and Graves (1975); Rubin and Khosla
(1976) as spline methods; Adam (1975, 1977), Ciment and Leventhal (1975);
and Leventhal (1980) as (operator) compact implicit (OCI) methods. How-
ever, following Peyret (1978) (see also Peyret and Taylor, 1982) all the implicit
formulas can be derived in a systematic way from a Taylor series expansion.

With a limitation to three-point expressions the general form of an implicit
finite difference relation between a function and its first two derivatives would
be

a+Ui+l + aOUi+ a-Ui-l + b+(Ux)i+l + bO(Ux)i+ b-(Ux)i-l

+ c+(Uxx)i+l + cO(Uxx)i+ c-(Uxx)i-l =0 (4.3.10)
Developing all the variables in a Taylor series about point i we have the
following expansion for equal mesh spacing:

~x2 ~X3 ~x4(a4u) ~xS(aSu)Ui:t 1 = Ui:t ~X(Ux)i + 2 (Uxx)i:t 6 (Uxxx); + 24 a? i:t 51 a? i

~X6 (iJ6U) ~x7 (iJ7U) ~x8 (iJ8U)+6!~i:t~a?i+~axsi+'" (4.3.11)
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~X2 ~X3 (fJ4U) ~x4 (fJ5U)(Ux);:!: 1 = (Ux);:t ~X(Uxx); + 2 (Uxxx); :t 6 a:? ; + 24 axs ;

~x5 (fJ6U) ~X6 (fJ7U) ~X7 (fJ8U):t-s;: ~ ;+61 a""X7 ;:t7! a? ;+... (4.3.12)

~X2 (fJ4U ) ~x3 (fJ5U) ~x4 (fJ6U)(Uxx);:!:l = (Uxx);:t ~X(Uxxx); +2 a:? ;:t 6 axs ; + 24 W ;

~X5 (fJ7U) ~X6 (fJ8U):t -s;: a""X7 ; + 61 a? ; + ... (4.3.13)

When introduced into the implicit relation (4.3.10) we can request the
coefficients up to the third-order derivative of the truncation error to vanish, in
order to obtain at least second-order accuracy for the second derivatives. This

leads to the conditions
0+ + 00 - 0- = 0

~x(o+ - 0-)+ b+ + bo+ b- = 0

~x22 (0+ + 0-) + ~x(b+ - b-) + c+ + Co + c- = 0 (4.3.14)

~X3 ~X26 (0+ - 0-)+2 (b+ + b-)+ ~x(c+ - c-)=O

from which we can choose to eliminate 0+,00,0- and bo, for instance (other

choices are obviously possible, see Problem 4.6):

0+ = -.!- [ - 5b+ - b- + ~ (2c- - 4c+ - Co)
]2~x ~x

00 = ~ r b + - b - + ~ (c + + Co + C - )
]~x l ~x

(4.3.15)
0- =-21 [ b+ + 5b- +~ (2c+ -4c- - Co)

]~x ~x

6bo= 2(b+ + b-)+~ (c+ - c-)

and the truncation error R reduces to

~X3 [ 10 2 ] fJ4u R =- 2(b+ - b-) +- (c+ + c-) -- Co -
24 ~x ~x fJx4

~x4 [ 14 ] fJ5u +TiO 2(b+ + b-)+~(c+ - c-) axs

~x5 [ 28 2 ] fJ6u +- 4(b+ - b-) +- (c+ + c-) -- Co -

6! ~x ~x fJx6
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~X6 [ 36 ] a7u +-;;y- 4(b++b-)+~(c+-C-) a"X7

~X7 [ 54 2 ] a8u +- , 6(b+ - b-)+- (c+ + c-)-- Co -;-8 (4.3.16)
8. ~x ~x uX

Hence we have a four-parameter family of implicit relations (one parameter
may always be set arbitrarily to one since equation (4.3.10) is homogeneous).
These parameters can be selected on the basis of various conditions, according
to the number of derivatives and mesh points we wish to maintain in the
implicit relation or by imposing a minimum order of accuracy. For instance,
the second-order relation (4.3.7) is obtained with b+ = b- = bo = 0 and by
selecting c+ = c- = 1, Co = 10.

As can be seen from the expression of the truncation error, the highest order
of accuracy that can be achieved is six. This is obtained by imposing the
coefficients of the three first terms in R to vanish. This gives the relations

1b+ = - (8c+ + c-)
~x

1
b-=-(c++8c-) (4.3.17)

~X

Co= -4(c++c-)

Inserted into the above formulas a one-parameter family of implicit
relations is obtained between the function u and its first two derivatives, with

a=c-lc+:

3 24 3--z (13 + 3a)ui+1 - ~ (1 + a)ui + _2 A 2 (3 + 13a)ui-1
2~x ~x ~X

1 8 1- - (8 + a)(ux)i+ 1- - (1 - a)(ux)i + - (1 + 8a)(ux)i-1
~x ~x ~x

+ (Uxx)i+ 1- 4(1 + a) (Uxx)i + a(uxx)i-1 = 0 (4.3.18)

with the truncation error

8~X5 a7u ~X6 a8uR = -;- (1 - a) -:;-7 + _8 ' (1 + a) -;-8 (4.3.19)
7. uX. uX

The unique, implicit relation of order six is obtained from a = 1:

24 9~ (Ui+1 - 2Ui + Ui-l) - A [(Ux)i+1 - (Ux)i-l]
I1x ~X

+ (Uxx)i+ 1- 8(Uxx)i + (Uxx)i-1 = 0 (4.3.20)

with a truncation error

2 6(a8u)R = 8! ~X axs (4.3.21)
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Implicit relations, with first derivatives only, are obtained from
C + = Co = C - = 0, and can therefore be, at most, fourth-order accurate. From
equations (4.3.15) and (4.3.16) we obtain the one parameter family, with

fJ=b-/b+:

1 2 1- (- 5 - fJ)u;+ 1 + - (1 - fJ)u; + _2 (1 + 5fJ)u;- 1
2Ax Ax Ax

+ (Ux);+l + 2(1 + fJ)(ux); + fJ(Ux);-1 = 0 (4.3.22)

with a truncation error
3 ~4 A 4 ~5

R = ~ (1 - fJ) ~ + ~ (1 + fJ) ~ (4.3.23)
12 ax4 60 ax5

For fJ = 1 we obtain the unique fourth-order relation (4.3.3). For other choices
of fJ the formula is only third-order accurate.

Two-point implicit difference formulas

The most general two-point relation, with at least second-order accuracy for
the second derivatives, is obtained from a- = b- = c- = o. We obtain the
one-parameter family of relations from equation (4.3.14) with -y = b+/(Axa+)

1 1+-y-y~ (u; - U;+l) + ~ (ux); - ~ (ux);+l

1+"6 [(1 + 3-y)(uxX);+1 + (2 + 3-y)(uxx);] = 0 (4.3.24)

with the truncation error

Ax2 ( 1)a4u Ax3 ( 7)a5u R=- -y+- -+- -y+- - (4.3.25)
12 2 ax4 24 15 ax5

For -y = - 1/2 we have the unique third-order accurate relation,

u;+ 1 - U; 1 1
2-- [(UX);+I+(Ux);] +- 12 [(Uxx);+I-(Uxx);] =0 (4.3.26)

Ax 2Ax

with the truncation error

R=~ (~ ) (4327) 720 ax5 . .

Many other formulas can be derived, according to the points and/or the
derivatives we wish to isolate.

4.4 MULTI-DIMENSIONAL FINITE DIFFERENCE FORMULAS

The partial derivatives of functions of several variables can be approximated
by the formulas derived in the previous section considering each variable
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Figure 4.4.1 Two-dimensional Cartesian mesh

separately. We will represent in the following the operators for forward and
backward differences by 01, OyZ, with the subscript to indicate the space
co-ordinate.

In a two-dimensional space a rectangular mesh can be defined by the points
of co-ordinates xi=xo+i~x and Yj=Yo+j~y (Figure 4.4.1). Defining
Uij = U(Xi, Yj), all the above formulas can be applied on either variable x, y,
acting separately on the i and j subscripts. For instance for the first partial
derivative in the x-direction with first order accuracy

(au) Ui+i,j - Ui,j 1 ~+ O(A ) (4 4 1)(Ux)ij = - = = - Ux Uij + ...x . .
ax ij ~x ~x

and similarly in the y-direction:

(au) u' '+ 1 - U' , 1
(Uy)ij= - = l,j ,.J=-O;Ui,j+O(~y) (4.4.2)

a y ij ~y ~y

Also, a second-order, central difference formula for the second derivative will
be, referring to formula (4.2.43),

( ) ,,= (~ ) =Ui+l,j-2Ui.j+Ui-l._~ (~
) ( 4.43

)Uxx IJ ax2 ij ~X2 12 ax4 .

and similar expressions can be derived for the y-derivatives. Besides the
straightforward application of the various formulas presented in the previous
section, additional forms can be defined by introducing an interaction between
the two space directions; for instance, through a semi-implicit form on one of
the two space co-ordinates.

4.4.1 Difference schemes for the Laplace operator

In order to illustrate this point let us consider the Laplace operator ~U =
Uxx + Uyy in two dimensions. Application of second-order central differencing
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in both directions leads to the well-known five-point difference operator, ~ (I):

~u..=Uj-l.j-2ujj+uj+l.j+uj,j-1-2uij+uj.j+l+o
(~ 2 ~ 2

)I) ~X2 ~y2 X, Y
(4.4.4)

= ~ (I)Ujj + O(~X2, ~y2)

or for a uniform mesh ~X = ~y:

~u..=Uj+l.j+Uj-l.j+Uj,j-I+uj,j+1-4uij_~ (~ ~ ) (44 5)I) ~X2 12 'dx4 + 'dy4 . .

This formula is illustrated by the computational molecule of Figure 4.4.2.
In operator form the five-point approximation ~ (I), written as

(I) (o~ 0; )~ uij = ~ + ~ uij (4.4.6)

is the most widely applied difference scheme of second order for the Laplace
operator. This is generalized to the operator V(kVu), following equation
(4.2.49), as the second-order difference operator:

- - 1 + - 1 + - 2 2
V.(kVU)ij = ~ (Ox kj+ 1/2,j Ox )Uij + ~ (Oy kj,j+ 1/2 Oy )Uij+ O(~x ,~y )

(4.4.7)

Other combinations are possible whereby difference operators on the two
space co-ordinates are mixed. For instance, the approximation

(2) 1 2 1 2~ = ~ (p,y Ox) + ~ (p'x Oy) (4.4.8)

is of the same order of accuracy as the schemes of Figure 4.4.2.
Worked out in detail, we have after introduction of the shift operators Ex

j

i
Figure 4.4.2 Computational molecule for the five-point Lap-

lace operator (equation (4.4.5»
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1 1

j

1 1

i

Figure 4.4.3 Five-point molecule for Laplace operator .1 (2)U
of equation (4.4.10) for .1x = .1y

and Ey following the definitions of Section 4.2,

~ (2)Uij = [ (ix IJ.yox) 2 + (i; IJ.XOy)l Uij = 4iX' (Ey + 2 + Ey- 1).

(4.4.9)

(Ex- 2 + Ex-l)Uij+-
4 1 2 (Ex + 2 + E;I)(Ey - 2 + E;I)Uij

~y
For ~x = ~y we obtain

(2) 1~ Uij=~ (Ui+l,j+l + Ui+l,j-l + Ui-l,j-l + Ui-l.j+l - 4Uij) (4.4.10)

which is represented in Figure 4.4.3.
Up to higher-order terms we can write

2 ( ~y2 (J2)( ~X2 (J4U) ( ~X2 (J2)( ~y2 (J4U)~ ( ) Uij = 1 + 4 a"Y2 Uxx + 12";)X4 ij + 1 + 4 -aX2 Uyy + 12";)? ij

(4.4.11)
1 2 (J4U 1 2 (J4U (~X2 + ~y2) (J4U = ~Uij+l2 ~x ";)X4+l2 ~y ";)?+ 4 aXza?+ ...

defining the truncation error of the ~ (2) difference operator.

However, this operator is not to be recommended for a Laplace equation,
since the odd-numbered points are detached from the even-numbered ones.
Referring to Figure 4.4.4., we observe that point (i, j) is coupled to the points
marked by a square, while there is no connection to the even-numbered points
marked by a circle. Hence a situation such as the one shown in Figure 4.4.4(b),
where the solution oscillates between the two values a and b when passing
from an even- to an odd numbered point, will satisfy the difference equation
d (2)Uij = O. Clearly, this solution will not satisfy the difference equation

(4.4.5).
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j+1

J

j-1

i-I i i+1

(0)

(b)

Figure 4.4.4 Generation of odd-even oscillations by the five-
point scheme of equation (4.4.10), represented in Figure 4.4.3

We can define a family of nine-point schemes for the Laplace operator on a
uniform Cartesian mesh ~x = ~y by the combination

~ (3)U;j = (a~ (1) + b~ (2»U;j with a + b = I (4.4.12)

With the operator notations of equations (4.4.2) and (4.4.7) we obtain (see
also Problem 4.9)

A (3) I [(~2 ~2 ) b ~2 ~2 ] A (1) b ~2 ~2
~ U;j=":;:i:X2 ux+Uy +2uXUY U;j=~ U;j+2uxuyU;j

(4.4.13)
~X2 [O4U 04U 04U ]= ~U;j + 12 "cJX4 + a? + 6b a?a?

The particular choice of b = 2/3 leads to the well-known scheme of Figure
4.4.5, which is also obtained from a Galerkin, finite element discretization/of
the Laplace operator on the same mesh, using bilinear quadrilateral elements
(See chapter 5).

With b = 1/3 we obtain the computational molecule of Figure 4.4.6, which is
recommended by Dahlquist and Bjorck (1974), because the truncation error is
equal to

-~ (~+~ )2U= -~. ~2U
12 OX2 oy2 12
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1

j

i

Figure 4.4.5 Nine-point molecule for the Laplace operator
(4.4.13) with b = 2/3

j

i

Figure 4.4.6 Nine-point molecule for the Laplace operator
(4.4.13) with b= 1/3

Hence the equation dU = >..u can be discretized with this nine-point operator
~ (3) = j ~ (I) + l ~ (2) and will have a truncation error equal to

>..2~X2- U
12

Therefore the corrected difference scheme

( >..2~X2)d(3)U"= >..+- U
IJ 12

will have a fourth-order truncation error.

4.4.2 Mixed derivatives

Mixed derivatives of any order can be discretized in much the same way by
using for Dx = a/ax and Dy = a/ay the various formulas and their possible
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combinations described above. The simplest, second-order central formula for
the mixed derivative is obtained from the application of equation (4.2.30) in
both directions x and y:

Uxy = ~ = ~ Jl,x Ox [ ( 1 - ¥ + O( ~X4) ) ] Jl,Y oy [ (1 - ~ + O( ~y4) ) ] Uij

(4.4.14)
and to second-order accuracy:

1 2 2
(UXY)ij= (Jl,xOxJl,y Oy)Uij+ O(~x ,~y )~x ~y (4.4.15)

= Ui+l,j+l- Ui+l,j-l- Ui-l,j+l + Ui-l,j-l+0(~X2)
4~x ~y

which is illustrated by the molecule in Figure 4.4.7.
Other combinations are possible; for instance,

(Uxy)i = -.!.- (Jl,x Ox Oy+ )Uij + 0(~X2, ~y)
~x ~y (4.4.16)

1 2=2~ (Ui+l,j+l - Ui-l,j+l - Ui+l,j + Ui-l,j) + O(~x ,~y)

which is first order in ~y and second order in ~x. This formula is represented
in Figure 4.4.8.

Permuting x and y, we obtain a formula which is second order in y and first
order in x. A first order formula in both x and y is obtained from the
application of 0: and 0;, leading to

(Uxy)i = -.!.- 0: O;Uij + O(~x, ~y)
~x ~y

(4.4.17)
1

=~ (Ui+l,j+l- Ui+l,j- Ui,j+l + Uij) + O(~x, ~y)

-1 1

j

1 -1

i

Figure 4.4.7 Computational molecule for Ihe second-order
accurate, mixed derivative formula (4.4.15)
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:

l'
.: ~

i~. - -.. , r . ."
J ~ ,t. .t~:c

i

Figure 4.4.8 Mixed derivative formula (4.4.16)

Observe that the same formula (4.4.17) will give a second-order accurate
estimation of the mixed derivative taken at the point (i + 1/2, j + 1/2), that is,

(Uxy)i+ 1/2,j+ 1/2 = (Ui+ I,j+ 1- Ui+ I,j - Ui,j+ I + Uij) + O(dX2, dy2)

1 (4.4.18)= ~ Ox OyUi+ 1/2,j+ 1/2 + O(dX2, dy2)

These formulas are represented in Figure 4.4.9.
In a similar way equation (4.4.16) is a second-order approximation to

(UXY)i,j+1/2.
Applying backward differences in both directions leads to

(Uxy)i= ~ 0; OyUij+ O(dX, dy)

1
=~ (Ui-I,j-l- Ui-I,j- Ui,j-1 + Uij) + O(dX, dY) (4.4.19)

1
=~ Ox OyUi-1/2,j-1/2 + O(dX, dy)

1/2

J

i
Figure 4.4.9 Mixed derivative formulas (4.4.17) and (4.4.18)
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Since the truncation errors of equations (4.4.19) and (4.4.17) are equal but
of opposite signs (see Problem 4.10), the sum of the two expressions will lead
to a second-order formula for the mixed derivative (uxy )i:

(Uxy)i= 1 [ox+ Oy+ + ox- Oy-]Uij+0(.lX2, .ly2)
2.lx .ly

1
=2~ [Ui+l,j+l- Ui+l,j- Ui,j+l + Ui-l,j-l- Ui-l,j- Ui,j-l

+ 2uij) + 0(.lX2, .ly2) (4.4.20)

This formula is represented in Figure 4.4.1 O(a) and, compared with the central
approximation (4.4.15) shown in Figure 4.4.7, has a non-zero coefficient for
uij. This might be advantageous in certain cases by enhancing the weight of the
uij coefficients in the matrix equations obtained after discretization, that is,
enhancing the diagonal dominance (see, for instance, O'Carroll, 1976).

An alternative to the last formulation is obtained by a combination of
forward and backward differences, leading to the second-order approximation
for (uxy )i, shown in Figure 4.4.10(b):

(Uxy)i = 1 [ox+ Oy- + ox- Oy+]Uij + 0(.lX2, .ly2)
2.lx .ly

1=2~ [Ui+l,j- Ui+l,j-l + Ui,j+l + Ui,j-l- Ui-l,j+l + Ui-l,j- 2uij]

(4.4.21)
= 1 (ox OyUi+l/2 j-l/2 + Ox OyUi-l/2,j+l/2) + 0(.lX2, .ly2)

2.lx.lY ,

It can also be seen, by adding up the two last expressions, that we recover the
fully central second-order approximation (4.4.15).

Hence we can define the most general, second-order mixed derivative

j

i i

(a) (b)
Figure 4.4.10 Second-order mixed derivative approximations (4.4.20) and (4.4.21)



195

approximation by an arbitrary linear combination of formulas (4.4.20) and
(4.4.21) (see also Mitchell and Griffiths, 1980):

1(UXY)i = ~ Ox Oy(aUi+ 1/2,j+ 1/2 + aUi-1/2.j-1/2

+ bUi+1/2.j-1/2 + bUi-1/2.j+1/2) + 0(.:lX2, .:ly2) (4.4.22)

with

a + b = 1 (4.4.23)

for consistency.

4.5 FINITE DIFFERENCE FORMULAS ON NON-UNIFORM
CARTESIAN MESHES

For non-uniform or curvilinear meshes the discretization of the equation can
be performed after a transformation from the physical space (x, y, z) to a
Cartesian, computational space (~, "7, r). The relations between the two spaces
are defined through the co-ordinate transformation formulas such as
~ = ~(x, y, z) and similar formulas for "7 and r, and are considered as
performing a mapping from the physical space to the computational space
(~,"7, r), Figure 4.5.1.

Therefore all the formulas derived above can be applied in the (~, "7, r) space
on the equations written in the curvilinear co-ordinates. These transformed
equations contain metric coefficients which have to be discretized in a
consistent way. They introduce the mesh size influence in the difference
formulas. Hence this procedure extends, in a straightforward way, the use of
finite difference techniques to arbitrary geometries and meshes, the only
restriction of finite difference meshes being that all mesh points have to be
positioned on families of non-intersecting lines with one family for each space

y 77

$

71

x f.
Physical plane Computational plane

Figure 4.5.1 Mapping between an arbitrary co-ordinate system (~.7/) in the
physical plane and the computational plane
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I Axj ~xi+1 ~xi+2 jI ' I I I I x...

i-I i i+1 i +2 i+3
Figure 4.5.2 Arbitrary mesh point distribution in one-dimensional space x

co-ordinate. For instance, in Figure 4.5.1 the ~ lines may not intersect with
each other since this would lead to two different values of ~ for the same point.

An insight into the influence of non-uniform mesh sizes can be obtained
from the following approximations, derived from Taylor series expansions.
On an arbitrary mesh point distribution Xi we have for the first derivatives the
one-sided first-order formulas (Figure 4.5.2)

( ) . = Ui+ 1 - Ui - ~
(4 5 I)Ux I A 2 Uxx . .

uXi+l

Backward difference

Ui- Ui-l AXi
(Ux)i= AXi+T Uxx (4.5.2)

where the notation

AXi = Xi - Xi-l (4.5.3)

is introduced

Central difference

Combining the above two formulas in order to eliminate the first-order
truncation error leads to the second-order formula (also see Problem 4.11):

( ) I [ AXi ( AXi+ 1
]Ux i= A A -:.:--- Ui+l- Ui)+~ (Ui- Ui-l)

uXi+uXi+l uXi+1 uXi

_AXiAxi+l (454)6 Uxxx . .

We can also obtain one-sided forward or backward second-order formulas,
involving three mesh points by the standard techniques of Taylor expansions.
For a forward formula we obtain

( ) .- (AXi+l + AXi+2 Ui+l- Ui AXi+l Ui+2- Ui )Ux I - . - - .
AXi+2 AXi+l AXi+2 AXi+l + AXi+2

+ AXi+l(Axi+l + AXi+2)
(4 5 5)6 Uxxx . .
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Second derivatives

The three-point, central difference formula for the second derivative is
obtained as

( ) (Ui+l- Ui Ui- Ui-l ) 2Uxx i = ~Xi+l- ~Xi ~Xi+1 + ~Xi

1 ~x~+ I + ~xr (iJ4U)+3(~Xi+l- ~Xi)Uxxx-12(~Xi+1 + ~Xi) aX4 (4.5.6)

It is important to observe here the presence of a truncation error proportional
to the difference of two consecutive mesh lengths ~Xi+ I and ~Xi. If the mesh
size varies abruptly, for instance if ~Xi+ 1 = 2~Xi, then the above formula will
be only first-order accurate. This is a general property of finite difference
approximations on non-uniform meshes. If the mesh size does not vary
smoothly a loss of accuracy is unavoidable. More details can be found in
Hoffman (1982).
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PROBLEMS

Problem 4.1
Derive third-order accurate formulas for (ux)i, with forward and backward difference
formulas, applying equations (4.2.18) and (4.2.20).

Problem 4.2
Apply a Taylor series expansion to a mixed backward formula, for the first derivative

(ux)i = aUi-2 + bUi-l + CUi + dui+ I

Obtain the truncation error and show that this formula is second-order accurate.
Hint: obtain

1 ~x2(ux)i = - (Ui-2 - 7Ui-l + 3Ui + 3Ui+ I) - - Uxxx
8~x 24

Problem 4.3

Apply a Taylor series expansion to the general form

(ux)i = aUi+2 + bUi+l + CUi + dUi-l + eUi-2

and obtain the central fourth-order accurate finite difference approximation to the first
derivative (ux)i at mesh point i. Repeat the same procedure to obtain an approximation
to the second derivative (uxx)i with the same mesh points. Show that the formula is also
fourth-order accurate. Calculate the truncation error for both cases.
Hint: Show that we have

( ) (-Ui+2+8ui+I-8ui-I+Ui-2) ~x4 (aSu)u .- +- -
X I - 12Ax 30 axs

( ) (- Ui+2 + 16ui+ 1 - 30Ui + 16ui-l - Ui-2) 1" 4(a6u)u . - + - ~x -
xx I - 12~x2 90 ax6

Problem 4.4

Repeat Problem 4.3 for the third and fourth derivatives and obtain

( ) Ui+2-2ui+l+2ui-l-Ui-2 1" 2(aSu)u . - - - ~x -
xxx, - 2~X3 4 axs

(~ )= Ui+2-4ui+l +6Ui-4ui-1 + Ui-2_~ (~
)ax4 i ~X4 6 ax6
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Problem 4.5

Evaluate numerically the first and second derivatives of cos x, sin x, ex at x = 0 with
forward, backward and central differences of first- and second- or fourth-order each.
Compare the error with the estimated truncation error. Take .lx = 0.1.

Problem 4.6

Derive a family of compact implicit finite difference formulas by eliminating the
coefficients 0+, b+, C+ and 00 from system (4.3.14). Derive the truncation error and
obtain the formulas with the highest order of accuracy.

Problem 4.7

Find the highest-order implicit difference formula, involving second derivatives at only
one point. Write this expression as an explicit relation for (uxx)i and derive the
truncation error.
Hint: Select C+ = c- = 0, Co = I. Obtain

I 2(uxx)i = - - [(Ux)i+1 - (Ux)i-l] + -z (Ui+l- 2Ui + Ui-l)
2.lx .lx

The truncation error is found to be

R=~ (~ )360 iJx6
and the formula is fourth-order accurate.

Problem 4.8

Derive a family of implicit difference formulas involving no second derivatives.
Hint: Select c+ = Co = c- = 0 and set a = b+/b-. Obtain the scheme

Ia(ux)i+l + 2(1 + a)(ux)i + (Ux)i-i - - [(5a + l)ui+1 + 4(1 - a)ui - (5 + a)ui-l] = 0
2.lx

with the truncation error

.lx3 iJ4u .lx4 iJsuR = - (a - I) - + - (I + a) -

12 iJx4 60 iJxs

, Problem 4.9

Define the computational molecule for the Laplace operator .l (3) on a uniform mesh,
following formula (4.4.13) for an arbitrary b.
Hint: Show that 0; 0; is represented by the molecule

j

I

Figure P.4.9
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Problem 4.10

Find the truncation errors of the mixed derivative formulas (4.4.14)-(4.4.22). In
particular, proof the second-order accuracy of formulas (4.4.18) and (4.4.21).

Problem 4.11

Show that the arithmetic average of the one-sided formulas (4.5.1) and (4.5.2) is not
second-order accurate on an arbitrary mesh.
Hint: Perform a Taylor series expansion and show that we obtain

( )- _! [ Ui+ 1- Ui Ui - Ui-l ] - ~Xi+ I - ~Xi ( ) - ~xf+ I + ~xf ( )-Ux I - + UXX I - UXXX I
2 ~Xi+1 ~Xi 4 12

Problem 4.12

Obtain formulas (4.5.5) and (4.5.6).

Problem 4.13

Obtain formulas (4.2.45) to (4.2.48).

Problem 4.14

Obtain formulas (4.2.52) to (4.2.59).

Problem 4.15

Obtain formulas (4.2.60) to (4.2.62).



Chapter 5

The Finite Element Method

The finite element method originated from the field of structural analysis as a
result of many years of research, mainly between 1940 and 1960. The concept
of 'elements' can be traced back to the techniques used in stress calculations,
whereby a structure was subdivided into small substructures of various shapes
and re-assembled after each 'element' had been analysed. The development of
this technique and its formal elaboration led to the introduction of what is now
called the finite element method by Turner et al. (1956) in a paper dealing with
the properties of a triangular element in plane stress problems. The expression
'finite elements' was introduced by Clough (1960).

After having been applied with great success to a variety of problems in
linear and non-linear structural mechanics it soon appeared that the method
could also be used to solve continuous field problems (Zienkiewicz and
Cheung, 1965). From then on, the finite element method was used as a general
approximation method for the numerical solution of physical problems
described by field equations in continuous media, actually containing many of
the finite difference schemes as special cases. Today, after its initial develop-
ments in an engineering framework, the finite element method has been put by
mathematicians into a very elegant, rigorous, formal framework, with precise
mathematical conditions for existence and convergence criteria and exactly
derived error bounds.

Due to the particular character of finite element discretizations the
appropriate mathematical background is functional analysis, and an excellent
introduction to the mathematical formulation of the method can be found in
Strang and Fix (1973) and Oden and Reddy (1976), and more advanced
treatments in Oden (1972) and Ciarlet (1978). From the point of view of
applications a general overview of the wide range of problems and a
presentation of the engineering treatment of finite element methods can be
found in Huebner (1975) and Zienkiewicz (1977). With regard to fluid flow
problems a general introduction is given by Chung (1978) and more advanced
developments are analysed in Temam (1977), Girault and Raviart (1979) and
Thomasset (1981). A recent addition to the literature on the applications of
finite elements to fluid flow problems is to be found in Baker (1983).

201
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5.1 THE NATURE OF THE FINITE ELEMENT APPROXIMATION

The basic steps in a finite element approximation differ from the correspond-
ing ones in a finite difference method essentially by the generality of their
formulation. In the previous chapter we have seen that in order to set up a
finite difference discretization scheme we must:

(1) Define a space discretization by which the mesh points are distributed
along families of non-intersecting lines;

(2) Develop the unknown functions as a Taylor series expansion around the
values at grid points; and

(3) Replace the differential equations by finite difference approximations of
the derivatives.

The finite element method, on the other hand, defines for each of these three
steps a more general formulation, as will become clear from the following.

5.1.1 Finite element definition of the space discretization

The space domain can be discretized by subdivision of the continuum into
elements of arbitrary shape and size. Since any polygonal structure with
rectilinear or curved sides can finally be reduced to triangular and quadrilateral
figures the latter are the basis for the space subdivision. The only restriction is
that the elements may not overlap and have to cover the complete computa-
tional domain. Figure 5.1.1 shows a schematic example while Figure 5.1.2 is a
surface discretization used in a practical computation (Bristeau et al., 1980) of
the flow around an aircraft. Within each element a certain number of points
are defined, which can be positioned along the straight (or curved) sides or
inside the element. These nodes will be the points where the numeric~l value
of the unknown functions, and eventually their derivatives, will have to be
determined. The total number of unknowns at the nodes, function values and
eventually their derivatives are called the degrees of freedom of the numerical
problem, or nodal values.

Figure 5.1.1 General finite element subdivision of a domain
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Figure 5.1.2 Surface finite element triangulation of an aircraft as applied in a potential flow
computation by Bristeau et 01. (1980). (Courtesy J. Periaux, Avions Marcel Dissault, France)

5.1.2 Finite element definition of interpolation functions

The field variables are approximated by linear combinations of known basis
functions (also called shape, interpolation or trial functions). If it is an
approximate solution of u(x) we write a series expansion of the form

it(x) = 2:; u/N/(x) (5.1.1)
/

where the summation extends over all nodes I. Hence one interpolation
function is attached to each nodal value or degree of freedom. These functions
N/(x) can be quite general, with varying degrees of continuity at the
inter-element boundaries.

Methods based on defining the interpolation functions on the whole
qomain, such as trigonometric functions leading to Fouri,er series, are used in
collocation and spectral methods, where the functions NJ(x) can be defined as
orthogonal polynomials of Legendre, Chebyshev or similar types. Other
possible choices are spline functions for NJ(x), leading to spline interpolation
methods. In these cases the coefficients u/ are obtained from the expansions in
series of the base functions.

In standard finite element methods the interpolation functions are chosen to
be locally' defined polynomials within each element, being zero outside the
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considered element. In addition, the coefficients u/ of the expansion are the
unknown nodal values of the dependent variables u. As a consequence the
local interpolation functions satisfy the following conditions on each element
(e), with I being a node of (e):

N}e)(x) = 0 if x not in element (e) (5.1.2)

and since u/ are the values of the unknowns at node number I:

u(x/)=u/ (5.1.3)

we have for any point XJ:

Nje)(XJ) = o/J (5.1.4)

An additional condition is provided by the requirement to represent exactly a
constant function u(x) = constant. Hence this requires

~ N}e)(x) = 1 for all xE (e) (5.1.5)
/

The global function N/ is obtained by assembling the contributions Nje) of all
the elements to which node I belongs. The above condition connects the
various basis functions within an element and the allowed polynomials will be
highly dependent on the number of nodes within each element.

5.1.3 Finite element definition of the equation discretization-integral
formulation

This is the most essential and particular step of the finite element
approximation since it requires the definition of an integral formulation of the
physical problem equivalent to the field equations to be solved. Two possibili-
ties are open for that purpose: either a variational principle can be found
expressing the physical problem as the extremum of a functional or an integral
formulation is obtained from the differential system through a weak formul-
ation, also called the method of weighted residuals. Although many physical
models can be expressed through a variational equation (for instance, the
potential flow model) it is well known that it is not always possible to find a
straightforward variational principle for all physical problems (for instance,
for the Navier-Stokes equations). Therefore the weak formulation, or method
of weighted residuals, is the most general technique which allows us to define
in all cases an equivalent integral formulation. Actually, in situations where
discontinuous solutions are possible (such as shock waves in transonic flows)
the integral formulation is the only one which is physically meaningful, since
the derivatives of the discontinuous flow variables are not defined.

Since weak formulations involve the definition of functionals, where
restricted continuity properties are allowed on the functions concerned, it is
important to define in a clear and precise way the functional spaces as well as
the appropriate norms, in order to derive correct convergence properties
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and error bounds. It is not our intention here to enter into these mathematical
aspects and the reader will find these detailed developments in the references
mentioned.

5.2 THE FINITE ELEMENT INTERPOLATION FUNCTIONS

Conditions (5.1.2)-(5.1.5) define the properties of the local polynomial
interpolation functions used in finite element approximations. Two families of
elements are generally considered, according to their degree of inter-element
continuity and the associated nodal values. If the nodal values are defined by
the values of the unknown functions, then CO continuity at the inter-element
boundary is sufficient for systems described by partial differential equations no
higher than two. These elements and their associated shape functions are
called Lagrangian elements.

If first-order partial derivatives of the unknown functions are to be
considered as additional degrees of freedom the inter-element continuity up to
the highest order of these derivatives will generally be imposed, and the
elements satisfying these conditions are Hermitian elements. When the
required continuity conditions are satisfied along every point of the inter-
element boundary, the element is called conforming. This condition is
sometimes relaxed, and elements whereby this continuity condition is imposed
only at a limited number of points of the boundary are said to be non-
conforming.

5.2.1 One-dimensional elements

Linear Lagrangian elements

The simplest element has a piecewise linear interpolation function and
contains two nodes. Referring to Figure 5.2.1, the element between nodes i
and i-I is denoted as element 1 and the adjacent element between i and i + 1
as element 2. They have node i in common and have respective lengths ~Xi and
AXi+l.

Considering element 1, relation (5.1.4) gives two conditions, and we obtain
for the shape functions at the nodes i and i-I of element 1 the linear form

N ~I)=(X-Xi-l) N(I)=(Xi-X) (521), A ,-I A . .
~Xi ~Xi

For element 2 we have the following linear shape functions:

N (2) - (Xi+1 - x) ..,(2) - (X- Xi)
(5 2 2)I - 1~,+ I - . .

~Xi+1 ~Xi+1

The global shape function Ni, associated with node i and obtained by
assembling Nfl) and Ni(2), is illustrated in Figure 5.2.1. It is zero for x ~ Xi+1
and x ~ Xi-I.
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1

N (.
I

j-1 j-1 j i+1

0 1 f.
Element 1 I ( 1 ) I -::-

Node numbers 1 2

0 1 f.
Element 2 I (2) I .
Node numbers 1 2

Figure 5.2.1 Linear one-dimensional elements and associated inter-
polation functions

I

If we define a local co-ordinate ~ within each element through the mapping i

~=(X-Xi-l) (5.2.3)
~Xi

the interpolation functions take the universal form

N1(~) = 1 - ~ N2(~) = ~ (5.2.4)

where node 1 corresponds to mesh point i-I with ~ = 0 and node 2 to mesh
point i with ~ = ]. Similarly, for element 2 the mapping between the subspace
(Xi, Xi+l) and the subspace (0.1) of the ~-space

~ = (x - Xi) (5.2.5)

~Xi+l
leads to

Ni(2) = I - ~ = Nl (~) N!;>l = ~ = N2(~) (5.2.6)
Hence this mapping allows the base functions to be defined through the
universal forms given by equation (5.2.4), independently of the physical
co-ordinates. They are determined by the nature of the element and the
number of nodal points. The explicit form of the shape function in physical
space is reconst.ructed from the knowledge of the mapping functions ~(x)
between the element being considered and the normalized reference element

(0,1):
N!I)(X) = Ni(I)(~(X» (5.2.7)

where the relation ~(x) is defined by equations (5.2.3) or (5.2.5).



207

The function u(x) is approximated on element I by the linear representation

u(x) = Ui-INf~)I(X) + uiNf)(x) (5.2.8)

or

- X-Xi-1
(529U(X)=Ui-I+'(Ui-Ui-l) Xi-I~X~Xi ..)

~Xi

On element 2, u(x) is approximated by

u(x) = uiNi(2) (x) + Ui+ INfi>l(x)

(5.2.10)
x-x'

=Ui+ '(Ui+I-Ui) Xi~X~Xi+1
~Xi+1

The derivative of U is approximated in this finite element representation by

~=~ Ui~ (5.2.11)
ax i ax

and, particularly at node i, we have within element 1

(Ux)i= (~ )(I)= Ui- Ui-1 (5.2.12)
ax i ~Xi

which corresponds to the first-order backward difference formula (4.5.2). In
element 2 we have the approximation

(Ux)i =
(~ )(2) = Ui+1 - Ui (5.2.13)

ax i ~Xi+ I

which is identical to the forward difference formula (4.5.1). It should be
observed that the derivatives of U are not continuous at the boundary between
two elements, since, by definition, the interpolation functions have only
CO-continuity, as can be seen from Figure 5.2.1.

It is therefore customary, in finite element approximations, to define a
'local' approximation to the derivative (Ux)i by an average of the 'element'
approximations (5.2.12) and (5.2.13). If a simple arithmetic average is taken
the resulting formula is:

(UX)i=! [(~ ) (I)+ (~)(2)
] =! (Ui+I-Ui_Ui-Ui-l

) (5.2.14)
2 ax i ax i 2 ~Xi+1 ~Xi

and has a truncation error equal to

~Xi-~Xi+l
( ) .

4 Uxx,

(see Problem 4.11). This approximation is only strictly second-order accurate
on a regular mesh.
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However, if each 'element' approximation is weighted by the relative length
of the other element, that is, if we define

1 [ ( au ) <l) ( au ) <2)](Ux)j = ~Xj+l -;-- + ~Xj -;-- (5.2.15)

~Xj + ~Xj+ 1 uX j uX j

we obtain formula (4.5.4), which is second-order accurate on an arbitrary
mesh.

Since any linear function can be represented exactly on the element, we can
also express the linear mapping ~(x) or x(~) as a function of the linear base
fun~tions (5.2.4). It is easily verified that equations (5.2.3) or (5.2.5) can be
written as

x = 2:; XjNi(~) (5.2.16)

where the sum extends over the two- nodes of the element. This particular
mapping is called an isoparametric mapping, and illustrates a general pro-
cedure which also applies to two- and three-dimensional elements.

Quadratic Lagrangian elements

An element with three nodes (i - 1, i, i + 1) will require three conditions (5.1.4)
and the base functions will be second-order polynomials, enabling the exact
representation of quadratic functions on the element. Since a mapping from
(Xj-l,Xj,Xj+l) to the ~-space (-1,0, +1) can always be defined through a
quadratic function ~ = ~(x), the interpolation functions can be directly defined
in the normalized space ~. Referring to Figure 5.2.2, we obtain

Nl = -0.5~(1-~) N2 = (1- ~2) N3 =0.5~(1 +~) (5.2.17)

and we easily verify that condition (5.1.5) is satisfied.
The general mapping between x and ~ is quadratic, and, since any quadratic

function on an element can be written as a linear combination of the basis
functions Nj(j = 1,2,3), the following isoparametric mapping can be defined:

3
x(~) = 2:; xjNj(~) (5.2.18)

j=l

where the summation 1, 2, 3 corresponds to nodes i-I, i, i + 1 and the basis
functions Nj are given by equation (5.2.17). In evaluating the derivatives of the
interpolation functions, aN)ax, we proceed as follows, by application of the
derivative rules:

~-~.~-~ !.--ax - a~ ax - a~ ax/a~

(5.2.19)
-~. 1- a~ }:::kXk(aNk/a~)
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j-1 i i +1

I I I.
-1 I ~O +1 ~ t

Node number \. ~ !.-

Quadratic shape functions

1

Node number 1 2 3

Figure 5.2.2 Quadratic one-dimensional elements and associated interpola-
tion functions on normalized element (-1,0,1)

The denominator can be evaluated independently, since it depends only on
the geometrical mapping. With functions (5.2.17) we have, referring to
Figure 5.2.2,

ax(~) 1--a:e-- = ~(XI - 2X2 + X3) - 2(XI - X3)

(5.2.20)
= ~(AXi+ 1- AXi) + !<AXi+ I + AXi)

For an equidistant mesh AXi+ 1= AXi = Ax, the right-hand side of equation
(5.2.20) reduces to Ax.

Combining equations (5.2.19) and (5.2.20) gives the derivative of any of the
three basis functions within the element (i-I, i+ 1). For instance, for
j= i-I, we have

~= (2~-I) (5.2.21)
ax 2~(Axi+ 1- AXi) + (AXi+ 1+ AXi)

leading to the nodal values

(aNi-I ) -3 (aNi-I ) 1ax i-I =3Axi- AXi+1 ax i= - AXi+1 + AXi

( ~ ) = 1 (5.2.22)

ax i+1 3 AXi+I-Axi
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Similar relations are obtained for the other two base functions (see Problem
5.1).

These relations are applied to the computation of finite element approxima-
tions of first-order derivatives through

(~ )= ~ u.(~ )= Uj-1 ~+ Uj ~+ Uj+1 ~ (5.2.23)ax j J ax ax ax ax

following the framework outlined with the linear elements (see also Problem
5.2).

Hermitian element with two nodes

Hermitian elements are characterized by the fact that the derivatives of the
unknown functions are taken as additional degrees of freedom with continuity
Cl at the inter-element boundary. For an element with two nodes, four
equations (5.1.4) have to be satisfied if the first derivatives are taken as nodal
values, since four shape functions corresponding to the four degrees of
freedom of the element have to be considered.

Referring to Figure 5.2.1 and denoting the first derivatives of the function U
by ux, conditions (5.1.4) require third-order polynomials for the shape
functions. These are Hermitian cubic polynomials ~, HI, satisfying, in local
co-ordinates,

H?(~) = Oij ~ Hl(~) = Oij (5.2.24)

and with the representation
4

U = UIH'l + U2~ + (Ux)IH! + (UxhHl = ~ ujNj (5.2.25)
j=1

1.0

0.8

0.6

0.4

0.1

~
0 0

- 0.1

Figure 5.2.3 Hermitian interpolation functions for a two-node, one-
dimensional element
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where subscripts 1 and 2 refer to the nodes i - 1 and i of element 1. We obtain

BY = 1 - 31;.2 + 21;.3 H~ = 1;.2(3 - 21;.)

HI = (1 - 1;.)2 H! = 1;.2(1;. - 1) (5.2.26)

These Hermitian basis functions are represented in Figure 5.2.3.

5.2.2 Two-dimensional elements

The most currently used elements are widely described in the literature on finite
elements, and their derivation and properties can be found in most textbooks
on the subject (see, for instance, Huebner, 1975; Zienkiewicz, 1977; Chung,
1978). Therefore we will limit ourselves to a tabular presentation of various
types of elements and associated base functions which have been or could be
applied in finite element flow computations.

Since any two-dimensional polynomial figure, with straight or curved sides
can always be subdivided into triangles and quadrilaterals there is actually no
need to define other two-dimensional elements. Table 5.1 lists a selection of
most widely used elements, their degrees of freedom, the associated expression
of the interpolation function, generally in local co-ordinates, and some
additional remarks and properties when necessary.

Table 5.1. Two-Dimensional Elements

Type of element Interpolation function Element geometry

TRIANGULAR Piecewise polynomial of degree I Physical space
PI-Linear element Ni = ax + by + c

2a = (Yz - Y3)/A
2b = (X3 - xz)/A

Degrees of freedom 2c= (xzY3 - x3Yz)/A 3
UI. Uz. U3 A = area of triangle 123

I XI YI I
I Y CO-continuity A = 1/2 Xz Yz I

X3 Y3 I

1

x

Local co-ordinates: L1. Lz. L3
LI = (Area P23)/A Local coordinates
Lz = (Area PI3)/A Lt. Lz. L3
L3 = (Area PI2)/A
Lt + Lz + L3 = I
N;=L;
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Table 5.1. (continued)

Type of element Interpolation function Element geometry

Isoparametric transformation
X=XtLI+XzLz+X3L3 L =ct, L 2 = ct
P . I

ropertles
Integration formula

r L;"LfLf dO=
J4 1

, , , L3=ct

m.n.p. .2A(m + n + p + 2)! I \
I \\

\

P2-Quadratic element Piecewise polynomials Physical space
of degree 2
In local co-ordinates 3

Degrees of freedom Corner node
UI,UZ,...,U6 Ni=2(L;-I)L; i=I,2,3

CO-continuity Mid-side node
N=4L1LzNs = 4L3Lz "-

N6=4LtL3
Y

\ 2

x

Local co-ordinates:
(Lt, Lz, L3)

Isoparametric transformation
6- ~ - y

x= L.I x;N;
i=t )

( 1 1)
2 '2

( 1,0,0

10,1.0)
2 2

X
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Table 5.1. (continued)

Type of element Interpolation function Element geometry

PI-Linear element Local co-ordinates
Lagrangian- N. = L2 + L3 - La
non-conforming Nil = L3 + La - L2 L1 :1 3

NIII=Ll+Lz-L3 L2:1
/ 2

UI, UII, U/ll Error estimate-semi-nom. - / /

II U - Uh II L! = O(h) i
see Thomasset (1981) - --- L3:1

2r N1NII dS = 0 for I ~ J 1

J4 0'

0' \

\
\

QUADRILATERAL ELEMENTS

QI-Bilinear element Piecewise bilinear polynomials Physical space
Lagrangian-conforming ~I = :t I, III = :t I
U"UZ,U3,lI4 NI=l(I+~~/)(I+IIII/)

I = 1,2,3,4

"
Y ,. ~

)C

CO-continuity Local co-ordinates
~,II

lsoparametric transformation '77

4

x= 2: xINI
1=1 4 (0,1) 3

(-1,01 (1,01--
F.

1 (0,-1) 2
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Table 5.1. (continued)

Type of element Interpolation function Element geometry

Q2-Blquadratlc element Piecewise biquadratic polynomials Physical space
Lagrangian-conforming Define

~i=i-2 i=I,2,3
"j=j-2 j= 1,2,3

Degrees of freedom
UI,...,U9 K.(F.)=!F.(F.-I)

K2(F.) = I - f
CO-continuity K3(F.) = !F.(F.+ I) y

..-

1 \
\ IV

x
For a node I with 'co-ordinates' Local co-ordinates
(i, j) we have F.",
N/(F.. ,,) = Ki(F.)Kj(")

"1
Example: Node 7
N7=K.(F.)K3(,,)=!F.(F.-I),,(,,+I) 7 6 5

Node 9 (0,1)
N9 = K2(F.)K2(") = (I - f)(1 - ,,2)

8 (-1,0) 9 (1,0) 4 (

(0,-1 )
1 2 3 ,

"

.Biquadratic Q2 element Piecewise biquadratic polynomials Physical space '
or

'serendipidity' element Corner nodes F.o = F.F.i. "O = ""i
Conforming
Degrees of freedom N/ = !(I + F.o)(1 + "o)(F.o + "O - I) "
u" ..., Us 7 :

,
I

Y .--- t -- 4-- --
I -', (
I ", '
,
,

x
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Table 5.1. (continued)

Type of element Interpolation function Element geometry

Mid-side nodes Local co-ordiantes
NI = l(1 - ~2)(1 + 110) ~; = 0
NI=l(I-1I2)(I+~) 11;=0 '1

7 6 5

(0.1)

8 (-1.0) (1.0) 4 F.

(0.-1 )
1 2 3

5.2.3 Three-dimensional elements

Table 5.2 presents a summary of the most current elements used in three-
dimensional flow computations.

Table 5.2. Three-dimensional elements

Type of element Interpolation function Element

TETRAHEDRALS N, = L, = ax + by + cz + d

PI-Linear L, = Volume (P 234) 1

Lagrangian-conforming For node 1

Degrees of freedom:
Ul, U2, U3. U4 I I Y2 Z2

/a = - I Y3 Z3

I Y4 Z4

I X2 I Z2
1b= - X3 I Z3

X4 I Z4 2 4

I X2 Y2 I
Ic = - X3 Y3 I

X4 Y4 I

\ X2 Y2 Z2
\d= X3 Y3 Z3

X4 Y4 Z4 3

Other L, are obtained by
cyclic permutation
V = volume tetrahedron (1234)
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Table 5.2. (continued)

Type of element Interpolation function Element

x. YI 7.. 1
v= Xz Yz 7.z 1

X3 Y3 7.3 1
X4 Y4 Z4 1

Properties

.!. r Lf'LfLfL1 d()= 6m!n!p!q!
V J v (m + n + p + q + 3)!

P2-Quadratie Corner nodes: NI = (2LI- I)LI 1

Lagrangian-conforming
Mid-side notes: N, = 4L.L3

Degrees of freedom
UI. U.O

CO-continuity

5

2 9 4

3

HEXAHEDRALS NI = ~ (1 + Eb )(1 + 7/7/1 )(1 + rr/)

Ql T ' I. z t 8(-1.1.1) 7(1.1.1)- n loear 6
Lagrangian-conforming EI = :t 1 -I

)+ 1 . .1
7//= -

Degreesoffreedom rl=:tI 1=1 ,8 (1.1,-1)

Ul. Us

1.-1,-1)

X (

5.3 INTEGRAL FORMULATION: THE METHOD OF WEIGHTED
RESIDUALS OR WEAK FORMULATION

In order to illustrate the principles of this approach we will consider first the
classical example of the two-dimensional quasi-harmonic equation,

~ (k~ U)+~ (k~ U)= q (5.3.1)
ax ax ay ay

written as L(u) = q, where L represents the differential operator.
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If u(x, y) is an approximation to the solution u, the quantity R, called the
residual,

R(u) = ~(u) --- q (5.3.2)
= V. (kVu) - q

is different from zero, otherwise u would be the analytical solution. Any
resolution algorithm will converge if it drives R(u) towards zero, although this
value will never be reached in a finite number of operations. Hence the residual
appears as a measure of the accuracy or of the error of the approximation u.
Since this error canot be made to vanish simultaneously in all the points of the
discretized domain a 'best' solution can be extracted by requiring that some
weighted average of the residuals over the domain should be identically zero.

It W(x) is some weight function with appropriate smoothness properties,
the method of weighted residuals, or weak formulation, requires

Jo WR(u) dO=O (5.3.3)

Applied to equation (5.3.2) this condition becomes

J 0 WV. (kVu) dO = J 0 qW dO (5.3.4)

An essential step in this approach is an integration by part of the second-order
derivative terms, according to Green's theorem:

r WV. (kVu) dO = - r kVu. V W dO + A- k ~ W dr (5.3.5)
Jo Jo jr an

where the normal derivative along the boundary r of the domain appears in
the right-hand side. Equation (5.3.4) becomes

r -. -. A- au r- Jo kvu. VWdO+ jr ka-;; Wdr= Jo qWdO (5.3.6a)

or, in condensed notation,

-. -. ( au )-(k Vii, VW)+ ka-;;' W r-(q, W)=O (5.3.6b)

where the inner functional product (f, g) is defined by

(f, g) = J 0 fg dO (5.3.7)

Equation (5.3.6) is the mathematical formulation of the weighted residual
method, and is also called the weak formulation of the problem.

According to the choice of the weighting functions W (also called test
functions) different methods are obtained. From a numerical point of view
equation (5.3.6) is an algebraic equation, and therefore in any method as many
weighting functions as unknown variables (degrees of freedom) will have to
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be defined within the chosen subspace of test functions. That is, a unique
correspondence will have to be established between each nodal value and a
corresponding weighting function in such a way that one equation of the type
(5.3.6) is defined for each nodal value. Note also that if Ow is the subspace
of the test functions then the weighted residual equation (5.3.3) expresses
the condition that the projection of the residual in the subspace of the test
functions is zero, that is, the residual is orthogonal to the subspace Ow.

5.3.1 The Galerkin method

The most widely method is the Galerkin method, in which the weighting
functions are taken equal to the interpolation functions Nr(x). This is also
called the Bubnow-Galerkin method, to be distinguished from the Petrov-
Galerkin method, in which the test functions are different from the interpol-
ation functions Nr.

For each of the M degrees of freedom, with the finite element representation

a(x,t)=2:;ur(t)Nr(x) (l=l,...,M) (5.3.8)
r

and the choice W = NJ(x), in order to obtain the discretized equation for node

J, we obtain from equation (5.3.6)

" ~ - - ~ au ~- LI ur kVNr. VNJ dO + k;- NJ df' = qNJ dO (5.3.9)
r 0; r un 0;

where OJ is the subdomain of all elements containing node J and the
summation over I covers all the nodes of OJ (see Figure 5.1.1). The matrix

KrJ= r kVNr. VNJ dO = (kVNr, VNJ) (5.3.10)
JO;

is called the stiffness matrix. For linear problems whereby k is independent of
u this will depend only on the geometry of the mesh and the elements chosen.

Equation (5.3.9) can also be obtained from the Rayleigh-Ritz method for
homogeneous boundary conditions. This is a general property, that is, if
applied to a variational formulation it leads to the same system of numerical
equations as the Galerkin-weighted residual method.

Example 5.3.1 One-dimensional equation

Consider the one-dimensional form of equation (5.3.1):

a ( au)~ k h = q (E5.3.1)

and a Galerkin weak formulation with linear elements. Applying equation
(5.3.9) we have explicitly, with the linear shape functions (5.2.4) and with
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dXi= dXi+1 = dX,
i+1 ~ i+1 aN. aN. ~ i+1 L:: Uj k ~ ~ dx - qNi(x) dx = 0 (E5.3.2)

j=i-1 i-I (IX (IX i-I

Performing the integrations, with the shape function derivatives equal to

:t 11 dX, we obtain

k. Ui+I-Ui_k' Ui-Ui-I=(qi-I+4qi+qi+l) (E533)1+ 1/2 dX2 1- 1/2 dX2 6 . .

where

1 ~ i+1 ki+ 1/2 = - k dx (E5.3.4)

dX i

and a similar expression for ki - 1/2. If a linear variation within each element is
assumed for k, then

ki+I/2=(ki+ki+I)/2 (E5.3.5)

It is interesting to note that the left-hand side of equation (E2.3.3) is
identical to the central second-order finite difference formula (4.2.50). In the
latter case the right-hand side would be equal to qi while in the finite element
Galerkin approach we obtain an average weighted over the three nodal points
i-I, i, i + 1. This is a typical property of the weighted residual Galerkin
method.

Observe also that linear elements lead to second-order accurate discretiza-
tions. It is a general rule, on uniform meshes, that elements of order p lead to
discretizations of order of accuracy p + 1.

Example 5.3.2 Laplace equation on a triangular uniform mesh

A triangulation of a uniform Cartesian mesh (dX = dY) can be defined as in
Figure 5.3.1. Node J is associated with the mesh co-ordinates (i, j) and the
Laplace equation is considered with Dirichlet boundary conditions:

dU=q
(E5.3.6)

U = Uo on r

The Galerkin equation (5.3.6) becomes

~ ~ (aNI aNJ aNI aNJ) ~- L.J UI - . - + - . - dx dy = qNJ dx dy (E5.3.7)
I OJ ax ax ay ay OJ

There is no boundary integral, since the weight functions are taken to vanish
on the boundaries. The integration domain OJ covers all the triangles
containing node J, that is, triangles 1-6. The summation extends over all the
nodes of these triangles.

With linear shape functions, according to Table 5.1 we have for NJ = Ni,j in
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triangle I
N~.l) = NJ<I) = l-~

I) ~x

N~I)1 .= 1 + x- Xi+I,j- Y- Yi+ I,j (E5.3.8)
1+ ,J ~X ~Y

N51) . = 1 + Y - Yi+ I,j+ 1

1+ I,J+ 1 ~Y

Similarly, in triangles 2 and 3,

N,<,z) = 1 - '-=-.l!1.
IJ ~Y

(E5.3.9)
N~~) = 1 + ~ - '-=-.l!1.

IJ ~X ~Y

~y

j

~x

i

(a)

SlJ

2

1

(b)

Figure 5.3.1 Finite element domain formed by six linear
triangular elements. (a) Triangular elements on Cartesian

mesh; (b) general triangular elements
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The contributions from triangle 1 to the stiffness niatrix KIJ are obtained as
follows, with the notation KJJ = KIf and ~x = ~y:

K!.+I,j(I)= r (~.~i.!li+~.~~ )dxdy (E5.3.10)IJ J 1 ax ax oy oy

= r (- .-!.-).(.-!.-)dx dy = - l
JI ~x ~x

K!.+ I,j+ 1(1) = 0IJ

(E5.3.11)
K ij(l) -!

ij -2

Adding the contributions from all the triangles, we obtain

~;: - 4. Ki.+ l,j - K!.-I,j - ~i. 1- K!,j-1 - -1,~ -.' IJ .. - IJ - I,J+ - IJ - (E5.3.12)
K (.+I,J+I_Vl Y I . 1- 0IJ -rl.I-,J--

and equation (E5.3.7) becomes, for a linear variation of the source term q
within each triangle,

-4Uij+(Ui+I,j+Ui-I,j+Ui,j+I+Ui,j-l) (E5.3.13)

~x2= 12 (6qij+ qi+ I,j + qi-I,j + qi+ I,j+ 1+ qi,j+ 1+ qi-I,j-1 + qi,j- U

Compared with the finite difference discretization of the Laplace operator it is
seen that the left-hand side is identical to the five-point molecule of Figure
4.4.2. In a finite difference method the right-hand side would be equal to qij,
while the finite element method generates an average of the points surrounding
the node (i, j).

5.3.2 Finite element Galerkin method for a conservation law

Consider the conservation law of the form (2.1.5):

~+ V. p=O (5.3.11)

where P is the flux vector containing only convective contributions with the
following initial boundary conditions on the domain 0 with boundary
r = rOur1:

U(X, 0) = Uo(x) for t=O xeO

U(x,t)=U1(x) for t~O xero (5.3.12)
P.Yn=Fn=g for t~O xer1
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Defining a weak formulation, with W = 0 on ro,

r '?!:! WdO+ r (V. F)WdO= r QdO (5.3.13)
JD at JD JD

followed by an integration by parts on the flux term leads to

r '?!:! WdO- r (F. V)WdO+ r WF.dS= r QdO (5.3.14)
JD at- JD Jr JD

The finite element representation is defined by

u= 2:; UI(t)NI(x) (5.3.15)
I

and since the flux term F is generally a non-linear function of U it is preferable
to define also a separate representation for the fluxes F as

F= 2:; FINI(x) (5.3.16)

The discretized equation for node J is obtained via the Galerkin method,
W = NJ, leading to

2:; ~ r NINJ dO -2:; FI r NI. VNJ dO + r gNJ dr = r QNJ dO
I dt JDJ I JDJ Jr. JDJ

(5.3.17)

where OJ is the subdomain of all elements containing node J and the
summation over I covers all the nodes of OJ (Figure 5.1.1).

The matrix of the time-dependent term is called the mass matrix MIJ:

MIJ = r NINJ dO (5.3.18)
JD;

and the stiffness matrix

KIJ= r NIVNJ dO (5.3.19)
JD;

is no longer symmetric. Hence equation (5.3.17) becomes

~ dUI ~ -+ -+
~ ~£oJ MIJ - - £oJ Fl. KIJ = QNJ dO - gNJ dr (5.3.20)

I dt I D; r,
If the flux F contains in addition a diffusive term of the form (- x V U) then

the term (V. xVU) will be treated according to equation (5.3.9). In finite
difference discretizations the time-dependent term will generally reduce to
dUJ/dt, corresponding to a diagonal mass matrix, while the present formula-
tion leads to an average over the various nodes in OJ. The presence of this mass
matrix complicates the resolution of the system of ordinary differential
equations (5.3.20) in time.

A rigorous way of diagonalizing the mass matrix is to introduce 'orthog-
onal' interpolation functions and to apply a Petrov-Galerkin method with
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these new functions, following Hirsch and Warzee (1978). A more currently
applied approximation, called mass lumping, consists of replacing MIJ by the
sum over I at fixed J, this sum along the elements of a column being
concentrated on the main diagonal. That is,

Mfymp) = [~ MIJ] OIJ (5.3.21)

The modified equation (5.3.20), obtained in this way, is close to a finite volume
formulation.

5.3.3 Subdomain collocation-finite volume method

The collocation methods (domain and point collocation) both use the residual
equation (5.3.13) without partial integration on the weighting function W. If a
sub domain OJ is attached to each nodal point J, with the corresponding
weighting function defined by (see Figure 5.1.1)

WJ(x)=O x~OJ (5.3.22)
WJ(x) = 1 xE OJ

then the residual equation (5.3.13) becomes

r 8-.!:! dO + r V. P dO = + r Q dO (5.3.23)
JoJ at JoJ JoJ

A more interesting form of this equation is obtained after application of
Gauss's theorem on the flux term, leading to the conservation equation in
integral form written for each subdomain OJ limited by the closed surface/I' J:

r ~aUdO+,{:, P.dS= r QdO (5.3.24)
JoJ t j rJ JoJ

This equation, which can be obtained directly from equation (5.3.14), is the
basic equation for the finite volume method which takes as its starting point
the physical conservation laws in integral form written for small volumes
around every mesh point. The advantage of this method, especially in the
absence of source terms, is that the fluxes are calculated only on two-
dimensional surfaces instead of in the three-dimensional space. In this
subspace the contour integrals can be discretized either by finite difference
techniques or by finite element methods. For two-dimensional problems,
where the flux integrals are one-dimensional, both approaches will lead to the
same numerical discretization of these terms, at least for the lowest-order
approximation. The sub domains OJ are allowed to overlap with the condition
that each part of the surface I' J appears as part of an even number of different
subdomains such that the overall integral conservation law holds for any
combination of adjacent subdomains.

The finite volume method is a widely used approach, and will be presented in
more detail in Chapter 6.
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Example 5.3.3 Conservation law on linear triangles

We apply the Galerkin equation (5.3.17) with linear triangles for a node Jnot
adjacent to the boundary r I of the domain and in the absence of source terms.
Referring to Figure 5.3.1, the domain OJ contains six triangles and the nodes
numbered 1-6 around node J. We will also lump the mass matrix, leading to
the approximation (see Problem 5.10)

OJ
MIJ=30IJ (£5.3.14)

The flux terms can be written as

J -- -- ~ -- J -- ~ J aNJ F. VNJ dO = £..I FI NI. VNJ dO = £..I /J NI - dO

OJ I OJ I OJ ax
(£5.3.15)

~ J aNJ + £..I gl NI -;- dO
I OJ UY
. --

where f and g are the Cartesian components of F.
With the relations in Table 5.1 we have for triangle JI 2

aNJ / aNJ /ax=(YI-Y2)2AI2 ay=(X2-XI)2AI2 (£5.3.16)

where A 12 is the area of triangle JI2. Since these derivatives are constants, the
integrals in equation (£5.3.15) reduce to the integrals over NI, which are equal
to A 12/3. Hence the contribution to the flux term of the Galerkin formulation
from triangle JI2, becomes

J I F. VNJ dO = (YI - Y2)6(/I + h + fJ) - ~(XI - X2)(gl + g2 + gJ)
JI2

(£5.3.17)

Summing over all the triangles we obtain

J 1~ - F. V NJ dO = _3 £..I (/12 .1.Y12 - gl2 .1.XI2) (£5.3.18)

OJ sides

with

/12 =!</I + h) gl2 = i(gl + g2) (£5.3.19)
.1.Y12 = Y2 - YI .1.X12 = X2 - XI

The contributions from fJ, gJ cancel out of the summation on all the triangles,
since

~ .1.Y12 = ~ .1.X12 = 0 (£5.3.20)
sides sides

because r J is a closed contour.
Introducing this expression into the Galerkin equation (5.3.17) leads to the
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following discretized scheme:

OJ ~dUJ + ~ (f12 ~Y12 - gl2 ~XI2) == 0 (E5.3.21)
t sides

which is nothing else than a finite volume discretization on the hexagonal
contour r J, as will be seen in Chapter 6.

Alternative formulations If the flux terms of equation (E5.3.21) are recom-
bined, for instance by assembling terms such as

(it + h)(Y2 - Yl) + (h + h)(Y3 - Y2) = h(Y3 - Yl) + ...
= -Y2(h - it)+ ...

we obtain the alternative formulation

dUJ 1 ~OJ dt +:2 f [!I(YI+ 1- YI- I) - gl(xI+ I - XI-I)] = 0 (E5.3.22)

where the summation extends over all the nodes, with Yo = Y6 and Y7 = YI (and
similarly for the X co-ordinates). We can also write equation (E5.3.22) as

dUJ 1 ~OJ dt +:2 f [(fl- fJ)(YI+I - YI-I) - (gl- gJ)(XI+I - XI-I)] = 0

(E5.3.23)

since all the contributions to fJ and gJ vanish, because of

~ fJ(YI+I - YI-I) = fJ ~ (YI+I - YI-I) = 0 (E5.3.24)
I I

The other formulation becomes

dUJ 1 ~OJ dt -:2 f [YI(fI+1 -!I- I) - xI(gl+ 1- gl-I)] = 0 (E5.3.25)

or alternatively

dUJ 1 ~OJ dt +:2 f [(YJ- YI)(fI+1 - fl-l) - (xJ- X/)(gl+1 - gl-I)] = 0

(E5.3.26)

with the conv~ntions fo = f6 and h = 14 (and similarly for g). The above
relations can also be derived from the results of Problem 5.11. Note that these
relations are independent of the number of triangles inside OJ and therefore
apply to any polygonal contour.

5.4 PRACTICAL COMPUTATIONAL TECHNIQUES

Two basic aspects are involved in finite element computations: the mapping
from the physical co-ordinate space, where the element is defined, to the
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computational space of the local co-ordinates and the numerical integration
rules of the various integrals appearing in finite element formulations.

5.4.1 General mapping to local co-ordinates

The first topic is generally handled by the multi-dimensional generalization of
the isoparametric transformation concept, whereby the mapping function
from the x-space to the f-space makes use of the shape functions in local
co-ordinates N;(f) through

x= ~ x/N/(f) (5.4.1)
/

where the summation extends to all the nodes I of the element. This mapping
performs a transformation on every element separately, and the whole space is
mapped on an element-by-element basis. Of course, certain continuity and
conformability conditions have to be satisfied, and Figure 5.4.1, from
Zienkiewicz (1977), gives some rules for uniqueness of the mapping (5.4.1).

When the interpolation functions are of a degree higher than one, the
mapping allows the representation of curved elements. For instance, with
quadrilateral elements the curved side of a two-dimensional element will be
represented in the computation by a parabolic curve.

Note that, in general, the nodes I used in the mapping defined above need

[g c=:{> a < 1800

(0) Linear element

a < 1800D ~ ~:;
(b) Quadratic element WtL

Safe zone
for midpoint

Figure 5.4.1 Rules for uniqueness of isoparametric mappings on linear and
quadratic quadrilateral elements. (Reproduced by permission of McGraw-~ill

Book Company from Zienkiewicz, 1977.)



227

not be identical in position or in number to the nodes used in the representa-
tion of the functions u. In this case the transformation is not called
isoparametric but super-parametric or sub-parametric if the number of nodes
used in the geometrical mapping is, respectively, higher or lower than the
number used for the function representation. We refer the reader to the
literature on finite elements for more details.

5.4.2 Numerical integration techniques

The various integrals appearing in finite element formulations can be evaluated
using stanc!ard transformation rules based on the co-ordinate transformation
(5.4.1). If J is the Jacobian matrix of this transformation the gradient of any
scalar function (for instance, one of the shape functions) defined in the
physical space will be evaluated from the derivatives in the transformed space
through

VxNI(x) = JVf.NI(f) (5.4.2)

The matrix elements of the Jacobian and the element volumes dO enter into the
computation of the stiffness matrices (5.3.10) and are evaluated as follows:

~~ ~~
~ a~ a~ = ax ax
J-l = and J = (5.4.3)

~~ ~~
arJ arJ iay ay

The elements of the Jacobian matrix are calculated from equation (5.4.1) by

ax ""' aNI ay ""' aNI. ~ = f XI --ai: ~ = f YI --ai: (5.4.4)

~ = ""' ~ ~ = ""' ~ (5 4 5)~ ~ XI ~ ~ ~ YI ~ . .
UrJ I UrJ UrJ I UrJ

The matrix elements of J are calculated from

~ -~
= arJ a~
J = J (5.4.6)

ax ax-- -

arJ a~
where 1/ J is the determinant of I J -1 I.

The derivatives of NI in physical space are obtained from equation (5.4.2).
For instance,

~ NI(x,y)=~.~+~.~= J(~.~-~.~
) (5.4.7)

ax a~ ax arJ ox orJ o~ a~ arJ
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With

1dO = - d~ d71 (5.4.8)
J

the stiffness matrix becomes

KrJ= J.o VxNr' VxNJdxdy= J Vf.Nr(jT@j). Vf.NJ]d~d71

(5.4.9)
= r g"l3aaNr.aI3NJ!d~d71 a,{3=1,2

Jo J

where gal3 is the metric tensor:

gal3 = (jT@ j)al3 (5.4.10)

and ~I = ~, ~2 = 71.

Observe that formula (5.4.8) can be used to derive an approximation to the
Jacobian of the element, when d~ and d71 are replaced by their extreme values.
For a quadrilateral element of area A, with .1.~ = .1.71 = 2, we have A = 4/ J.

In practical calculations the integrations are performed numerically using
Gaussian quadrature:

J+I n
f(~) d~ = ~ Hif(~i) (5.4.11)

-I 1

where the summation extends to n well-defined points in the integration
interval (-1, + 1) and where Hi are the corresponding weight coefficients. For
most of the computational methods used in practice it will be unnecessary to
take more than four Gauss points. Actually, in many instances two-point
Gauss integration gives sufficient numerical accuracy, since with n points, a
polynomial of order (2n - 1) is integrated exactly.

The lowest Gauss abscissa and weight coefficients are given in Table 5.3. A
two-dimensional integration of the form J f(~, 71) d~ d71 is calculated with
Gauss points in each direction separately, leading to

r+1 r+1 n n
J-I J-I f(~,71) d~ d71 = i~ j~ HiHjf(~i,71j) (5.4.12)

Table 5.3. Gauss point integration for quadrilaterals

n ~i Hi

1 0.0 2.0
2 :to.5773502691896 1.0
3 :t 0.7745966692415 0.5555555555556

0.0 0.8888888888889
4 :to.86113631 15941 0.3478548451375

:to.3399810435849 0.6521451548625
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The extension to three dimensions is straightforward. The above integration
rule is valid on a rectangular domain or a cubic volume in three dimensions.

For triangular or tetrahedral regions in local co-ordinates the limits of
integration involve the variables themselves. since in two dimensions we have.
on a triangle with local co-ordinates Lj (see Table 5.1).

r r i r 1- L,
J f(Li. L2. L3) dO = 2A J 0 Jo f(LI. L2. L3) dLi dL2 (5.4.13)

Table 5.4. Gaussian integration formula from triangular elements. (Reproduced by permission
of McGraw-HilI Book Company from Zienkiewicz, 1977)

Triangular
Order Fig. Error Points co-ordinates Weights

Linear R = O(h2) a l, l, l 1

I I 0 Ia z,z, J
Quadratic R = O(h3) b 0, !, ! l

I 0 I I
C z, '2 J

I I I 27a J' J' J - 48

Cubic R = O(h4) b 0.6, 0.2, 0.2 ~i
C 0.2, 0.6, 0.2
d 0.2,0.2,0.6

a l, 1l 0.22500,O<XXX>
b al..8I,.81
C .81, al,.81 0.13239,41527

Quintic R = O(h6) d .8I,.8I.al

e a2. .82, .82

/ .82,a2,.82 0.12593,91805
g .82. .82. a2

with

at =0.0597158717
.81 = 0.470142<Xi41
a2 = 0.7974269853
.82 = 0.1012865073
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where A is the area of the triangle. The Gauss integration rule is written as

r+1 rl-LI I n
Jo Jo f(LI, L2, L3) dLI dL2 =:2 ~I Hif(Lli, L2i, L3i) (5.4.14)

The adapted integration rules, Gauss point co-ordinates and weight
coefficients are given in Table 5.4 (from Zienkiewicz, 1977). The correspond-
ing information for tetrahedra is given in Table 5.5. The integration errors for
triangles and tetrahedra are indicated in these tables, and for quadrilateral or
parallelipipedic elements we have the following properties. The error due to
the numerical integration is of the order O(liil'n- k+ I) for an integration with n

Gauss points of an integral containing derivatives up to the first order and
interpolation functions of order k. In order for the numerical integration not
to destroy the overall order of accuracy we should have

n ~ k (5.4.15)

Hence for linear elements single-point integration will be sufficient, while for
quadratic elements 2 x 2 (or 2 x 2 x 2 in three dimensions) Gauss points will be
required in order to maintain the overall accuracy. For quadratic triangles it is

Table 5.5. Gaussian integration formula from tetrahedral elements. (Reproduced by permission
of McGraw-Hill Book Company from Zienkiewicz, 1977)

Triangular
No. Order Fig. Error Points co-ordinates Weights

1 Linear R = O(h2) a 1,1, 1, 1 1 j

a a, (3, (3, (3 1
b (3,a, (3,(3 1

2 Quadratic R = O(h3) C (3, (3, a, (3 1
d (3,(3,(3, a 1

a = 0.58541020

(3 = 0.13819660

1 1 1 1 4a.,.,.,. 5b 1 1 1 1 9
)'6'6'6 20

3 Cubic R = O(h4) C 1, !.1,1 ~
d 1 1 1 I 9

6'6')'6 20
1 1 1 1 9e 6'6'6') 20
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seen from Table 5.4 that three Gauss points are need in two dimensions and
four for the linear tetrahedra.

Note the following exact integration formulas for triangles and tetrahedra,
which are very useful in practice:

r L,?,LfLP dO = 2A m!n!p! (5.4.16)J 3 (m + n + p + 2)!

valid in two dimensions, and for tetrahedra of volume V,

r L'?'LfLPLq dO = 6V m!n!p!q! (5.4.17)J 3 4 (m + n + p + q + 3)!
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PROBLEMS

Problem 5.1

Derive the relations similar to equations (5.2.22) for the quadratic basis functions Ni
and Ni+1 defined by equation (5.2.17).

Problem 5.2

Obtain the approximations for the derivatives (au/ax) within the quadratic Lagrangian
element (i + 1, i, i-I) following equation (5.2.23). Show that the following approxim-
ations are obtained:

( ) Ui-1 - 4Ui + 3Ui+ I
Ux i+l =

3.1Xi+l- .1Xi

( ) Ui+I-Ui-1
Ux i=

.1Xi+ I + .1Xi

( ) -3Ui-I+4ui-Ui+1 Ux i-I =
3.1Xi - .1Xi+ I

Compare these with the finite difference formulas (4.2.19), (4.2.21) and (4.2.31) and
show that the finite element formulas become of second-order accuracy on a uniform
mesh .1Xi = .1Xi+ I. Compare the truncation errors of the above approximation for (Ux)i
with approximation (5.2.13) (see also Problem 4.11).

Problem 5.3

Apply the Galerkin method, with linear elements, to the first-order equation

au
a-=qax

Show that on a uniform mesh, .1Xi = .1Xi+ I = .1Xi, we obtain the same discretization as
with central differences.

Problem 5.4

Apply the Galerkin method to equation (E5.3.1) for constant k with the second-order
Lagrangian elements. Consider the two elements formed by the points (i - 2, i-I, i)
and (i, i + 1, i + 2). Show that for an interior point, such as (i - I), we obtain with

constant k

k I~ (Ui-2 - 2Ui-1 + Ui) = lii(qi-2 + 8qi-1 + qi)
.1x

and for a boundary point, such as point i,
k--z (- Ui-2 + 8Ui-1 - 14ui + 8Ui+ I - Ui+2)

4.1x
= - ~ (- qi-2 + 2qi-t + 8qi + 2qi+ 1- qi+2)

Show, by a Taylor expansion, that the left-hand side expression is a second-order
approximation of a second derivative, and compare with the finite difference formula
(4.2.47), which has fourth-order accuracy.



233

Problem 5.5

Apply the relations derived in Problem 5.1 in order to obtain the Galerkin equations for
the convection equation for quadratic elements

au
a-=q

ax

Show that we obtain the following finite element representation, referring to the
elements defined in Problem 5.4, at an interior node (i - I), for constant a:

a I- (Ui-2 - Ui) = ro(qi-2 + 8qi-1 + qi)
2.1x

and at a boundary point i,

a I- (Ui-2 - 4Ui-1 + 4Ui+ 1- Ui+2) = ro( - qi-2 + 2qi-1 + 8qi + 2qi+ 1 - qi+2)
6.1x

Compare the left-hand side representation of a first derivative with the five-point finite
difference formula (4.2.32) which has fourth-order accuracy:(au) 1 4 - = - (Ui-2 - 8Ui-1 + 8Ui+1 - Ui+2) + O(.1x )

ax i 12.1x
Show by a Taylor series expansion that the finite element formula, obtained from the
Galerkin term, (au ) 1 -, Ni =- (Ui-2 -4Ui-1 +4Ui+l- Ui+2)

ax 6.1x
has only second-order accuracy.

Problem 5.6

Apply the Galerkin weak formulation with the cubic Hermitian interpolation functions
to the first-order derivative operator Ux:

4
(ux, NJ) = ~ ul(axNI, NJ)

1=1
With a first choice of NJ = Hio show that we obtain, on a uniform mesh,

( r.o) -[(Ux)i-I-3(uX)i+(UX)i+l] (Ui+I-Ui-l)U ni -+x, , - 10 2.1x

Obtain also the second equation at node i for NJ = HI:

( H I ) (Ux)i-I-(Ux)i+1 (Ui-I-2ui+Ui+l)U . - +x, , - 60 10.1x

Show from Taylor series expansions that the above equations are implicit formulas for
the first-order derivatives with second-order accuracy. Compare with the third-order
accurate implicit difference formula obtained from equation (4.3.22) with {:J = - I

(Ux)i-1 - (UX)i+l+ Ui+l- 2Ui+ Ui-1 = - J:.- .1X3 (~ )2 .1x 12 ax4

Problem 5.7

Work out all the calculations of Example 5.3.2.
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Problem 5.8

Apply the Galerkin method to the Laplace equation on a uniform Cartesian mesh, with
bilinear quadrilateral elements. Show that we obtain the nine-point molecule of
Figure 4.4.5.

Problem 5.9

Show, by an explicit calculation, that the average value of a quantity V over an element
is approximated by

! r V dO =! t VI for linear triangles
0 J n 3 1= 1

=! t VI for bilinear quadrilaterals
4/=1

Compare with the approximations obtained from Gauss point integration formulas for
triangles and quadrilaterals using one Gauss point.

Hint: Take V = EI VINI and perform exact integrations. With a single Gauss point the
average of V is approximated by the value of Vat the centre of the element instead of
the average of the nodal values. (

Problem 5.10

Calculate the mass matrix elements attached to node J of Figure 5.3.1 with linear
triangles. Show that we obtain equation (E5.3.14) for the lumped mass approximation.

Hint: Obtain the following matrix, for a triangle of area A:

1 2 I I
1MIJ=~ I 2 I

12 1 1 2

Problem 5.11

Referring to Figure 5.3.1 show that the average of of/ax and ag/ay over the domain OJ,
covered by the six linear triangles, can be defined as

~ r i}1dO="MOJ JoJ ax - \h)

1=~ ~ /I(YI+I- YI-I)

where the summation extends over all the nodes of the contour r J, and

(~)= ~ r ~ dO = - ~ 2:: gl(X/+I- XI-I)
ay OJ JoJ ay 2OJ I

Hint: Calculate {(of/ax) dO for each triangle J12 by taking f= E/INI. Show that for
each triangle we have

J of 1-;;- dO = i[f. (Y2 - YJ) + h(YJ - YI) + fJ(YI - Y2)]
JI2 (IX

and sum these contributions over all the triangles.
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Problem 5.12

Apply the results of Example 5.3.3 to a quadrilateral domain such as 1234 in Figure
5.3.I(b), to obtain the following discretization of the flux integral on this quadrilateral:

~ F'dS=~[(Y3 - YJ)(f2-!4)+(f3-!J)(Y4-Y2)
j J234

- (X3 - XJ )(g2 - g4) - (g3 - gJ )(X4 - X2)]

Problem 5.13

Proof equation (5.2.16) for linear one-dimensional elements.

Problem 5.14

Apply the Galerkin method with linear elements to the conservation equation

~+~=oat ax
following Section 5.3.2. Show that we obtain the implicit formulation

I [dUi-1 4 dui dUi+l ] I ( I" 1" )- -+ -+- =- Ji+I-Ji-1
6 dt dt dt 2dX

Problem 5.15

Apply the Galerkin formulation of a conservation law (equation (5.3.20» to the
Cartesian mesh of Figure 5.3.I(a), considered as bilinear elements, without source
terms. Obtain the equation for node (i, j) and compare with the results of Example
5.3.3.

Perform the calculation, with and without mass lumping.

Problem 5.16

Consider a 2D cartesian mesh, such as Figure 5.3.I(a), and bilinear elements. Define the
x-derivative in point I(ij) by the following area average

r ~ N[ dO(~) = J II, ax
ax ij r N[ dO

JII,
where the integration domain covers the four quadrilateral elements having point I(ij)
in common. Show that this approximation corresponds to the central difference
formula(au) I - =- [(Ui+I,j+I-Ui-I,i+I)+4(Ui+I,j-Ui-I,i)+(Ui+I,i-I-Ui-I,i-I)]

ax ij 12dX

Problem 5.17
Consider one-dimensional quadratic elements (i - 2, i-I, i) and (i, i + I, i + 2) and
apply a Galerkin method to the discretization of the convection equation u, + aux = O.
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Show that the following schemes are obtained:

For end-node i
I [ dUi-2 2 dUi-1 8 dUi 2 dUi+1 dUi+2 ]- --+ -+ -+ ---
10 dt dt dt dt dt

a+ - (Ui-2 - 4Ui-1 + 4Ui+ I - Ui+2) = 0
4.1x

For mid side-node i + 1

I [ dUi+2 dUi+1 dUi] a ;'- --+8-+- +-(u. 2-U.)=0 J10 dt dt dt 2.1x 1+ 1 c'
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Chapter 6

Finite Volume Method and
Conservative Discretizations

The finite volume method was apparently introduced into the field of
numerical fluid dynamics independently by McDonald (1971) and Mac-
Cormack and Paullay (1972) for the solution of two-dimensional, time-
dependent Euler equations and extended by Rizzi and Inouye (1973) to
three-dimensional flows. This is the name given to the technique by which
the integral formulation of the conservation laws are discretized directly in
the physical space. Although, according to one's point of view, it can be
considered as a finite difference method applied to the differential, conserv-
ative form of the conservation laws, written in arbitrary co-ordinates, or
as a variant of a weak formulation as described in the previous chapter, its
importance and wide range of application justifies a separate presentation
here.

The method takes full advantage of an arbitrary mesh, where a large
number of options are open for the definition of the control volumes around
which the conservation laws are expressed. Modifying the shape and location
of the control volumes associated with a given mesh point, as well as varying
the rules and accuracy for the evaluation of the fluxes through the control
surfaces, gives considerable flexibility to the finite volume method. In addi-
tion, by the direct discretization of the integral form of the conservation laws
we can ensure that the basic quantities mass, momentum and energy will also
remain conserved at the discrete level. This is a most fundamental property for
numerical schemes, and its precise meaning will be discussed prior to the
introduction of the finite volume method.

6.1 THE CONSERVATIVE DISCRETIZATION

From the general presentation of Chapter 1 we know that the flow equations
are the expression of a conservation law. Their general form for a scalar
quantity U, with volume sources Q, is given by equation (1.1.1):

~ ~n UdO+ f s p. dS= ~n Q dO (6.1.1)

The essential significance of this formulation lies in the presence of the surface
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integral and the fact that the time variation of U inside the volume only
depends on the surface values of the fluxes. Hence for an arbitrary subdivision
of the volume 0 into, say, three subvolumes we can write the conservation law
for each subvolume and recover the global conservation law by adding up the
three subvolume conservation laws. Indeed, referring to Figure 6.1.1, the
above equation for the subvolumes 01, O2, 03 becomes

a! r U dO + J- pod S = r Q dO
t Jo1 jABCA Jo1

! r UdO+ J- podS= r QdO (6.1.2)
at Jo2 j DEBD Jo2

! r U dO + J- pod S = r Q dO
at J OJ j AEDA J OJ

When summing the surface integrals the contributions of the internal lines
ADB and DE always appear twice but with opposite signs, and will cancel in
the addition of the three subvolume conservation laws. Indeed, for colume 02,
for instance, we have a contribution of the fluxes

r podS
JDE

while for 03 we have a similar term:

r podS=_r podS
JED JDE

This essential property has to be satisfied by the numerical discretization of the
flux contributions in order for a scheme to be conservative. When this is not
the case, that is, when, after summation of the discretized equations over
a certain number of adjacent mesh cells, the resulting equation still contains
flux contributions from inside the total cell, the discretization is said to be
non-conservative, and the internal flux contributions appear as numerical
internal volume sources.

B

[
E

A
Figure 6.1.1 Conservation laws for subvolumes of volume ()
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Let us illustrate this on a one-dimensional form of the conservation law,
written here as follows, where f is the x-component of the flux vector:

au afat + -ax = q (6.1.3)

With a central difference applied to the mesh of Figure 6.1.2. the following
discretized equation is obtained at point i:

~ + .l!..:!:.~~i!'=J:.!.l:. = q; (6.1.4)

The same discretization applied to point (i + 1) will give

~+ /;+3/2 - /;+1/2 = .
(6 1 5)at ~x q,+ I . .

and for (i - 1)

~ + /;-1/2 - /;-3/2 = .
(6 1 6)at ~x q'-1 . .

The sum of these three equations is a consistent discretization of the
conservation law for the cell AB = (i - 3/2, i + 3/2):

.!(U;+Ui+I+U;-I)+/;+3/2-/;-3/2=! ( .+ . + . ) (617 )at 3 3~x 3 q. q'+1 q'-1 . .

since the flux contributions at internal points have cancelled out. This is
sometimes called the 'telescoping property' for the flux terms (Roache, 1972).

On the other hand, the non-conservative form (equation (1.1.7» can be
written as

au au
at+a(u)ax=q (6.1.8)

where the flux derivative has been expressed as

af ( a,[\ au
-ax = au) ax

and the function a(u) = af/au is the derivative of the flux function with
respect to the variable u. For instance, if f= u2/2, a(u) = u.

i-3/2 i-I/2 i+I/2 i+3/2 x
I I ~ 1 ~ 1 ~ 1 I 1 I...
I I i I i I i I i I I p0-

i -2 I i-I I i I i +1 I i +2
I I 1 I
I 104 ..04 .,

~x ~x
A B

Figure 6.1.2 Subdivision of the one-dimensional space into mesh cells
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Both for:mulations (6.1.3) and (6.1.8) are mathematically equivalent for
arbitrary, non-linear fluxes, but their numerical implementation is not.
Applying, for instance, a second-order central difference at mesh point i would
give

~ + . (Ui+ 1/2 - Ui-1/2) - .
(6 I 9)~ a, - q, . .

vt ~x

where ai can be estimated as ai = (ai+1/2 + ai-1/2)/2.
If similar equations are written for (i + I) and (i - 1) and summed, a

discretized equation for the cell AB in Figure 6.1.2 is obtained:

a (Ui+Ui+I+Ui-l ) ( + ) Ui+3/2-Ui-3/2 qi+qi+l+qi-1 - + ai+3/2 ai-3/2-

at 3 6~x 3
(6.1.10)

Ui+3/2 - Ui-1/2 Ui+ 1/2 - Ui-3/2= - (ai+ 1/2 - ai-3/2) 6~x + (ai+3/2 - ai-1/2) 6~x

A direct discretization of equation (6.1.8) on the cell AB would have given the
left-hand side of equation (6.1.10) with a vanishing right-hand side. It is
therefore seen that the discretization of the non-conservative form of the
equation gives rise to internal sources, equal in this case to the right-hand side
of equation (6.1.10). These terms can be considered (by performing a Taylor
expansion) as a discretization to second order of a term proportional to
~x2[(axux)x - (axuxx)] at mesh point i. For continuous flows, these numerical
source terms are of the same order as the truncation error and hence could be
neglected. However, numerical experiments and comparisons consistently
show that non-conservative formulations are generally less' accurate than
conservative ones, particularly in the presence of strong gradients.

For discontinuous flows, such as transonic flows with shock waves, these
numerical source terms can become important across the discontinuity and
give rise to large errors. This is indeed the case, and the discretization of the
non-conservative form will not lead to the correct shock intensities. Therefore
in order to obtain, in the numerical computation, the correct discontinuities
(such as the Rankine-Hugoniot relations for the Euler equations) it has been
shown by Lax (1954) that it is necessary to discretize the conservative form of
the flow equations.

Formal expression of a conservative discretization

The conservativity requirement on equation (6.1.3) will be satisfied if the
scheme can be written as

~+(fi+1/2-fi*-1/2)=qi (6.1.11)
vt ~x

where f* is called the numerical flux and is a function of the values of U at
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(2k - 1) neighbouring points:

fi*+1/2= f*(Ui+k,..., Ui-k+l) (6.1.12)

In addition, the consistency of equation (6.1.11) with the original equation
requires that, when all the Ui+} are equal, we should have

f*(u, ..., u) = f(u) (6.1.13)

The generalization to multi-dimensions is straightforward, and the above
conditions must hold separately for all the components of the flux vector. The
importance of this formalization of the conservativity condition is expressed
by the following fundamental theorem of Lax and Wendroff (1960):

Theorem If the solution Ui of the discretized equation (6.1.11) converges
boundedly almost everywhere to some function u(x, t) when ~x, ~t tend to
zero, then u(x, t) is a weak solution of equation (6.1.3).

This theorem guarantees that when the numerical solution converges it will
do so to a solution of the basic equations, with the correct satisfaction of the
Rankine-Hugoniot relations in the presence of discontinuities. Indeed, by
comparing the derivation of the Rankine-Hugoniot relations in Section 2.7.1
with the weak formulation of the basic flow equations, with W = 1 in equation
(5.3.14), it is obvious that these relations are satisfied by the weak solutions,
since the starting point of the derivation is the integral form of the conserva-
tion law.

6.2 THE FINITE VOLUME METHOD

The integral conservation laws are written for a discrete volume,

~ In VdO+ ~sF.dS= In QdO (6.2.1)

and applied to a control volume OJ, when the discretized equation associated
with VJ is to be defined. Equation (6.2.1) is replaced by the discrete form:

a """' ... ..._a (V./JJ) + £.oJ (F. S) = QJOJ (6.2.2)
t sides

where the sum of the flux terms refers to all the external sides of the control cell
OJ. Referring to Figure 6.2.2(a) and to cell l(i, fl, we would identify VJ with
Vi,}, OJ with the area of ABCD, and the flux terms are summed over the four
sides AB, BC, CD, DA. On the mesh of Figure 6.2.2(d) OJ is the dotted area of
the triangles having node J in common, and the flux summation extends over
the six sides 12,23,34,45,56,61. This is the general formulation of the finite
volume method, and the user has to define, for a selected OJ, how to estimate
the volume and cell face areas of the control volume OJ and how to
approximate the fluxes at the faces. We will discuss some of the most current
options, in two and three dimensions.
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The following constraints on the choice of the OJ volumes for a conservative
finite volume method have to be satisfied:

(1) Their sum should cover the whole domain 0;
I (2) Adjacent OJ may overlap if each internal surface r I is common to two

volumes;
(3) Fluxes along a cell surface have to be computed by formulas independent

of the cell in which they are considered.

Requirement (3) ensures that the conservative property is satisfied, since the
flux contributions of internal boundaries will cancel when the contributions of
the associated finite volumes are added.

Referring to Figure 6.2.1, cells 1-4 have no common sides and their sum
does not cover the whole volume. In addition, the sides are not common to two

I volumes. Cells 5-7 overlap, but have no common surfaces. Hence the
conservative property will not be satisfied.

Equation (6.2.2) shows several interesting features which distinguish the
interpretation of finite volume methods from the finite difference and finite
element approaches:

(1) The co-ordinates of point J, that is, the precise location of the variable U
inside the control volume OJ, do not appear explicitly. Consequently, UJ
is not necessarily attached to a fixed point inside the control volume and
can be considered as an average value of the flow variable U over the

Figure 6.2.1 Incorrect finite volume decomposition c'
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D . ~ A ~I A~B

'.)-1 I S
G H A --, B

AXAB

(0)

(b)

I

(c)

S'
4

(d)

Figure 6.2.2 Two-dimensional finite volume mesh systems. (a) Cell
centred structured finite volume mesh; (b) cell vertex structured finite
volume mesh; (c) cell centred unstructured finite volume mesh; (d) cell

vertex unstructured finite volume mesh
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control cell. This is the interpretation taken in Figure 6.2.2(a). The first
term of equation (6.2.2) therefore represents the time rate of change of
the averaged flow variable over the selected finite volume.

(2) The mesh co-ordinates appear only in the determination of the cell
volume and side areas. Hence, referring to Figure 6.2.2(a), and consider-
ing, for instance, the control cell ABCD around point 1, only the
co-ordinates of A, B, C, D will be needed.

(3) In the absence of source terms, the finite volume formulation expresses
that the variation of the average value U over a time interval At is equal
to the sum of the fluxes exchanged between neighbouring cells. For
stationary flows the numerical solution is obtained as a result of the
balance of all the fluxes entering the control volume. That is,

L:; (F' S) = 0 (6.2.3)
sides

When adjacent cells are considered, for instance cells ABCD and
AEFB in Figure 6.2.2(a), the flux through face AB contributes to the two
cells but with opposite signs. It is therefore convenient to program the
method by sweeping through the cell faces and, when calculating the flux
through side AB, to add this contribution to the flux balance of cell 1 and
substract it from the flux balance of cell 8. This automatically guarantees
global conservation.

(4) The finite volume method also allows a natural introduction of boundary
conditions, for instance at solid walls where certain normal components
are zero. For the mass conservation equation, F = p fj' and at a solid
boundary F' d S = O. Hence the corresponding contribution to equations
(6.2.2) or (6.2.3) would vanish.

Mesh and control volume definitions

Due to its generality, the finite volume method can handle any type of mesh
and has therefore the same flexibility, in this respect, as the finite element
method, restricted to elements with rectilinear sides. Two types of meshes can
be considered:

(1) A 'finite difference' type mesh, where all mesh points lie on the
intersection of two (or three) families of lines, considered as defining
curvilinear co-ordinate lines. They are currently designated as structured
meshes, and examples are shown in Figures 6.2.2(a) and 6.2.2(b).

(2) A 'finite element' type mesh formed by combinations of triangular and
quadrilateral cells (or tetrahedra and pyramids in three dimensions),
where the mesh points cannot be identified with co-ordinate lines.
Therefore they cannot be represented by a set of integers, such as i, j (or
i, j, k in three dimensions), but have to be numbered individually in a
certain order. This type of mesh is designated as unstructured, and
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examples are shown in Figures 6.2.2(c) and 6.2.2(d). Although requiring
a more complicated bookkeeping, unstructured meshes can offer greater
flexibility for complicated geometrical configurations.

An interesting example is provided by the internal flow in a circular duct
where a structured mesh, formed by circles and radial lines as shown in Figure
6.2.3(a), cannot avoid the 'singular' point at the centre, which requires special
treatment. This difficulty is avoided with the unstructured mesh of
Figure 6.2.3(b).

Once the mesh is selected, we have to decide where to define the variables:

(0)

u

(b)

Figure 6.2.3 Mesh configurations for flow computation in a
circular duct. (a) Structured and (b) unstructured mesh
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. j
J

i j

(a) McDonald (1971) (b) Denton (1975)

Figure 6.2.4 Examples of two-dimensional control surfaces
with cell-vertex finite volume method

(1) When the variables are associated with a cell, as in Figures 6.2.2(a) and
6.2.2(c), a cell-centred finite volume method is defined. The flow vari-
ables are averaged values over the cell and can be considered as
representative of some point inside the cell (for instance, the central point
of the cell).

(2) When the variables are attached to the mesh points, that is, to the cell
vertices, we speak of a cell-vertex finite volume method, as shown in
Figures 6.2.2(b) and 6.2.2(d).

With the first choice the mesh cells coincide with the control volume. With the
second, a larger flexibility exists for the definition of the control volumes.
Referring to Figure 6.2.2(b), an obvious choice would be to consider the four
cells having mesh point (i, j) in common as the control volume
GHKEFBCDG, associated with point (i, j). Many other choices are, however,
possible and two of them are shown in Figure 6.2.4. Figure 6.2.4(a) is from
McDonald (1971), who selected an hexagonal control volume, while Denton
(1975) used a trapezoidal control surface covering two half-mesh cells
(Figure 6.2.4(b».

6.2.1 Two-dimensional finite volume method

Equation (6.2.1), considered for control cell ABCD of Figure 6.2.2, can be
written as

~ J nil U dO + ~ ABCD (I dy - g dx) = J nil Q dO (6.2.4)

where 1 and g are the Cartesian components of the flux vector F. Equation
(6.2.4) is the most appropriate for a direct discretization. The surface vector
for a side AB can be defined as- - - - -

SAB = ~YAB Ix - ~XAB ly = (YB - YA) Ix - (XB - XA) ly (6.2.5)
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Figure 6.2.5 Area of an arbitrary plane quadrilateral

and we obtain the finite volume equation for cell Oij:

a_a (UO)ij + 2:: [fAB(YB - YA) - gAB(XB - XA)] = (Qa)ij (6.2.6)

t ABCD

The sum }:::ABCD extends over the four sides of the quadrilateral ABCD.
For a general quadrilateral ABCD the area 0 can be evaluated from the

vector products of the diagonals. As seen from Figure 6.2.5, the parallelogram
1234 built on the diagonals is twice the area of the quadrilateral ABCD. Hence
with XAB = XB - XA, where XA is the position vector of point A,

OABCD = ! I XAC X XBD I
=! [(xc - XA)(YD - YB) - (Yc - YA)(XD - XB)] (6.2.7)
= ! (I1.XAC I1.YBD - I1.XBD I1.YAC)

The right-hand side of equation (6.2.7) should be positive for a cell ABCD,
where A, B, C, D are located counterclockwise.

Evaluation of fluxes through cell faces

The evaluation of flux components along the sides, such as f AB, gAB, depends
on the selected scheme as well as on the location of the flow variables with
respect to the mesh. As will be seen more in detail in the following chapters
and in Volume 2 for the systems of Euler and Navier-Stokes equations, we
can distinguish essentially between central and upwind discretization schemes.
Central schemes are based on local flux estimations, while upwind schemes
determine the cell face fluxes according to the propagation direction of the
wave components.

For central schemes and cell-centred finite volume methods the following
alternatives can be considered:
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(1) Average of fluxes:

fAB = i(fij + J;+ I.j) (6.2.8)

k=f(Vij) (6.2.9)

(2) Since the flux components are generally non-linear functions of V, the
following choice is not identical to equation (6.2.8):

fAB = f(~2~..:!:.!d) (6.2.10)

(3) Take f as the average of the fluxes in A and B:

fAB = i (fA + fB) (6.2.11)

where either the variables are evaluated in A and B

VA=l(Vij+ Vi+l.j+ Vi+I,j-l+ Vi.j-l) (6.2.12)

and

fA = f(VA) (6.2.13)

or the fluxes are averaged, as

fA=l (fij+J;+I.j+J;+I,j-1 +/;,j-I) (6.2.14)

Observe that equations (6.2.10) and (6.2.13) will generally lead to schemes
requiring a lower number of flux evaluations compared with the application of
equations (6.2.8) and (6.2.14).

For central schemes and cell-vertex finite volume methods equations
(6.2.10) or (6.2.11) are straightforward approximations to the flux fAB. The
choice (6.2.11) corresponds to the application of a trapezium formula for the
integral IABfdy = (fA + fB)(YB - YA)/2.

By summing the contributions of these integrals over the four sides of cell
ABCD of Figure 6.2.2(b) we obtain the various discretizations already derived
in Example 5.3.3; for instance, the flux terms in equation (E5.3.23), which
become here:

~ - - 1p. dS= 2[(fA - fC)~YDB + (fB - fD)~YAC
ABCD -(gA - gC)~XDB - (gB - gD)~XAC] = 0 (6.2.15)

This also shows the equivalence of the flux evaluations in the cell-vertex, finite
volume approach, with the finite element Galerkin method on linear triangles
or bilinear quadrilaterals.

Example 6.2.1 Central scheme on a Cartesian mesh

Over a Cartesian, uniform mesh the above finite volume formulfion is
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identical to a finite difference formula. Indeed, with

ilYAB = Yi+1/2,j+1/2 - Yi+1/2,j-1/2 = ily
ilXAB = 0 ilXBC = - ilx (E6.2.1)

Oij = ilx. ily ilYCB = 0
we obtain, writing lAB = J;+ 1/2,j and similary for the other components,

a- Uijilx ily + (J;+ 1/2,j - J;-1/2,j)ily + (gi,j+ 1/2 - gi,j-1/2)ilx = Qij ilx ily

at

(E6.2.2)

After division by ilx ily this reduces to the central difference form:

~ + (fi+ 1/2,j - J;-1/2,j) + gi,j+ 1/2 - gi,j-1/2 = Qij (E6.2.3)
at ilx ily

We have still to define how to calculate the flux components at the side
centres J; z 1/2, j, gi, j z 1/2. With the choice (6.2.8) applied to Figure 6.2.2(a),
equation (E6.2.3) becomes

~+ J;+I,j- J;-I,j+ gi,j+l- gi,j-l= Qio (E6.2.4)
at 2ilx 2ily 'J

while equation (6.2.11) with equation (6,2.14) leads to

~ +! [2 J;+ I,j - J;-I,j + J;+ I,j+ 1- J;-I,j+ 1+ J;+ l,j-1 - J;-I,j-l

]at 4 2ilx 2ilx 2ilx

(E6.2.5)

+ ~ [2 gi,j+~~!i,j-l+ gi+I,j+~~!i+I,j-1 + gi-I,j+~~!i-I,j-l] = Qij

The central finite volume method therefore leads to second-order accurate
space discretizations on Cartesian meshes.

Observe that J;j, gij do not appear in equation (E6,2.4), and if (i + j) is even,
this equation contains only nodes with (i + j) odd. Hence even- and odd-
numbered nodes are separated, and this could lead to oscillations in the
solution. This separation is not present with equation (E6.2.5). For applica-
tions to cell-vertex meshes, the reader is referred to Problems 6.1-6.4.

For upwind schemes and cell-centred finite volume methods a convective
flux is evaluated as a function of the propagation direction of the associated
convection speed. The latter is determined by the flux Jacobian

- aft - -
A(U)=-=alx+bly (6.2.16)au

with a(U) = ai/au and b(U) = ag/au.
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The simplest upwind scheme takes the cell side flux equal to the flux
generated in the upstream cell. This expresses that the cell side flux is fully
determined by contributions transported in the direction of the convection
velocity.

Considering Figure 6.2.2(a), we could define

(p. S)AB = (p. S)ij if (A . S)AB > 0
... ... (6.2.17)

(P.S)AB=(P.S)i+I,j if (A.S)AB<O

For upwind schemes and cell-vertex finite volume methods (Figure 6.2.2(b»
we could define

(p. S)AB = (p. S)CD if (A. S)AB > 0
... ... (6.2.18)(p. S)AB = (p. S)EF if (A. S)AB < 0

When applied to the control volume GHKEFBCD of Figure 6.2.2(b), we
obtain contributions from points such as (i - 2, j) and (i, j - 2) for positive
convection speeds. This leads to schemes with an unnecessary large support
for the same accuracy. Therefore this option is not applied in practice (see
Problem 6.14).

Example 6.2.2 Upwind scheme on a Cartesian mesh

We consider the discretization of the two-dimensional linear convection
equation

au au au .at + a -ax + b ay = 0 wIth a > 0 and b > 0 (E6.2.6)

by a finite volume formulation on the cell ABCD of Figure 6.2.2(a), defined as
a Cartesian cell followJng Example 6.2.1.

The fluxes are defined by f = aU and g = bU and with the choice of

equation (6.2.17) we have, for AB and CD taken as vertical sides,

(p. S)AB = h fly = aUij fly
... ... (E6.2.7)

(p. S)CD = - };-I, fly = - aUi-I,j fly

and similarly for the two horizontal sides BC and DA:

(p. S)BC = gij flx = bUij flx

... ... (E6.2.8)(p. S)DA = - gi,j-1 flx= - bUi-I,j flx

The resulting scheme, obtained after division by the cell area flx fly, is only
first-order accurate, and is a straightforward generalization of the first-order
upwind scheme, to be introduced in Chapter 7 (equation (7.2.7»:

au.. 1 1
--!1.+- ( I'..- 1"- 1 .) +- (g ..- g . "- 1) =0 (E629 )at flx JIJ JI ,J fly IJ I,J . .
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or
au.. a b
--!l.+- (U'.- U.- 1 .) +- ( U'.- u. .- 1) =0 ( E6.2.10 )at ~x 'J ',J ~y 'J ',J

Non-uniform mesh Although the finite volume formulation applies to
arbitrary grids, the above equations for the determination of the fluxes
nevertheless imply some regularity of the mesh. Referring, for instance, to
equations (6.2.8) or (6.2.10) as applied to cell-centred finite volume methods,
and interpreting the cell-averaged values Uij in Figure 6.2.2(a) as mid-cell
values, it is seen that these equations perform an arithmetic average of the
fluxes (or the variables) on both sides of the cell face AB. This leads to a
second-order approximation on a Cartesian mesh (see Example 6.2.1) if AB is
at mid-distance from the cell centres 1 and 8. However, this will seldom be the
case on non-uniform meshes, as shown in Figure 6.2.6(a), and a loss of
accuracy will result from the application of these equations. Similar considera-
tions apply to equations (6.2.12) and (6.2.14), based on the assumption that
point A is in the centre of cell 1678. An analysis of the truncation errors for
certain finite volume discretizations on non-uniform meshes can be found in
Arts (1984), and more general analysis can be found in Turkel (1985), Turkel
et al. (1985) and Roe (1987).

A straightforward generalization of equations (6.2.8) and (6.2.10) can be
defined through a linear interpolation of fAS(or VAs) between the cell values
k and Ji+ I,j (or Uij and Ui+ I,j). This is uniquely defined on a one-
dimensional basis, which is of application for an orthogonal mesh such as
shown in Figure 6.2.6(b). Hence we can define

b a
fAS=- b Jij+- b Ji+I,j (6.2.19)

a+ a+

or ( b I ca )f AS = f O+b Ui) + O+b Ui+ I,j (6.2.20)

For more general meshes, the distances a and b could be defined as shown in
Figure 6.2.6(a), where M is the mid-point of AB, but in any case the
second-order accuracy can only be maintained for sufficiently smooth varying
mesh sizes (see Turkel, 1985, and Turkel et al., 1985, for a more detailed
discussion).

Generalizations of equations (6.2.12) and (6.2.14) to non-uniform meshes
can be considered via an area weighted average instead of an arithmetic one.
For instance, we could define

UA = L:; OJUI/OT (6.2.21)
I

where the summation ranges over the four points 1, 6, 7, 8, with OJ being the
area of cell I and OT is the total area of the four cells 1,6,7,8. However, this
formula, although natural, has the drawback of giving the lowest weight to the~
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smaller cell. Applying equation (6.2.21) to Figure 6.2.6(a) will give to point A
a stronger dependence on point 7(; + 1, j - 1) than on the much closer point
1(;, j). This should be avoided, for instance through the application of finite
element interpolations. We could consider the quadrilateral 1678 as a bilinear
element and define, instead of equation (6.2.14),

VA = b V/N/(XA, YA) (6.2.22)
/

where the shape functions N/ are the bilinear polynomials of the QI elements
(see Table 5.1) and where the summation ranges over the four points 1,6,7,8.
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Figure 6.2.6 Non-uniform finite volume meshes. (a) Non-
uniform finite volume mesh; (b) orthogonal non-uniform finite

volume mesh
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By definition of the finite element interpolation functions, if point A is close
to one of the corner points of the cell, say point 1, than VA ~ VI, since
NI(XJ, YJ) ~ OIJ if points I and J are close enough. Alternatively, we could
define a similar relation for the fluxes as a generalization of equation (6.2.12).
For cell-vertex methods equation (6.2.11) can remain unchanged for arbitrary
cell configurations.

In all cases, even with the above equations, a loss of accuracy will be
unavoidable on strongly distorted meshes. However, cell-vertex schemes will
generally maintain their accuracy for broader families of non-uniform meshes.
As a general guideline one should avoid, if possible, discontinuous mesh size
variations, for instance by generating grids analytically. With regard to the
flux integrals, the application of finite element interpolations and integration
rules can be considered as a valid guideline for the obtention of equations on
strong non-uniform meshes.

6.2.2 General integration formulas for finite volumes

It is often necessary in finite volume discretizations to define numerically cell
averages of derivatives of mesh variables. Particularly with the Navier-Stokes
equations, the viscous flux components are functions of the velocity gradients,
and we have to estimate appropriate values of these gradients on the cell faces.
A general procedure, valid for an arbitrary control volume in two and three
dimensions, can be derived by application of the divergence theorem.

This theorem can be considered as defining the average of the gradient of a
scalar V as a function of its values at the boundaries of the volume under
consideration. Since for an arbitrary volume O.

In VVdO= f s VdS (6.2.23)

where S is the closed boundary surface, we can define the averaged gradients as

(a V) 1 r av 1 it- -. -.~ n = {1 J n ~ dO = n j s V Ix. dS (6.2.24a)

and (a V) 1 r av 1 it- -. -.
ay n=n JnaydO={i js V ly'dS (6.2.24b)

For two-dimensional control cells 0 we obtain

(~ ) =! it- V dy = _! it- y dV (6.2.25a)
ax n 0 js 0 js

after partial integration. Similarly, the averaged y-derivatives are obtained
from

(~ ) = _! it- V dx =! it- x dV (6.2.25b)
ay n 0 js 0 js
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Considering the control cell of Figure 6.2.2(d) and applying trapezoidal
integration formulas along each side, the following equations are obtained, in
agreement with the relations of the previous section:

(au) 1 r au 1
~ IJ=O JIJ~dO=20~(U,+U'+I)(Y'+I-Y/)

-1"=20 f (YI+ YI+I)(UI+I- VI)

(6.2.26a)
1= 20 ~ UI(YI+I - YI-I)

-1"=""2:0 f YI(UI+I - VI-I)

where the summation extends over all the vertices, from 1 to 6 with Uo = U6
and U7 = UI. The two last relations are obtained by rearranging the sums, as
has been shown in Example 5.3.3.

The corresponding relations for the y-derivatives are derived after replacing
x by Y and changing the signs of the various expressions:

(a~ 1 r au -1ayJIJ = 0 JIJ ay dO =""2:0 ~ (UI+ UI+I)(XI+I- XI)

1=20 ~ (XI + XI+I)(UI+I- VI)

(6.2.26b)
-1"=""2:0 f UI(XI+I- XI-I)

1=20 ~ XI(UI+I- VI-I)

The area of the cells can be obtained by equations similar to the above by
noting that for U=x the left-hand side of equation (6.2.26b) is equal to 1.
Hence the following expressions can be used for the estimation of the area
of an arbitrary cell:

1
0 =:2 ~ (XI + XI+ I)(YI+ 1- Y/)

-1"= 2 f (YI+ YI+I)(XI+I - XI)

(6.2.27)
I

=:2 ~ XI (YI+ 1- YI-I)

-1"=2 f YI(XI+I- XI-I)
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For an arbitrary quadrilateral ABCD, as shown in Figure 6.2.5, an interest-
ing formula is obtained by applying the third of the above relations, noting
that the differences ~Y can be grouped for opposite nodes, leading to

'" U dy = _21 [(UA - UC)(YB - Yo) - (UB - UO)(YA - Yc)] (6.2.28)

j ABCO
and (£!:!) = (UA - UC)(YB - Yo) - (UB - UO)(YA - Yc) (6.2.29a)

ax ABCO (XA - XC)(YB - Yo) - (XB - XO)(YA - Yc)

with a similar relation for the y-derivative:

(:[Q) = (XA - XC)(UB - Un) - (XB - XO)(UA - Uc) (6.2.29b)

ay ABCO (XA - Xc)(yB - Yo) - (XB - XO)(YA - Yc)

Example 6.2.3 Two-dimensional diffusion equation

We consider the two-dimensional diffusion equation

au a ( au) a ( au)-;)i+-ax kax +a; kay =0 (E6.2.11)

with diffusive flux components f= kaulax and g= kaUlay, where k is a
constant. We would like to construct a finite volume discretization on the mesh
of Figure 6.2.2(a), considered as Cartesian, by expressing the balance of fluxes
around the cell ABCD with the choice

fAB = t (fA + fB) (E6.2.12)

and an evaluation of the derivatives a UI a x and a ul a Y in the cell corners A, B.

Equation (6.2.6) for cell (i, j) is written here as

(~) ij ~X ~Y + (fAB- fco) ~Y + (gBC - gOA) ~X= 0 (E6.2.13)

For point A the derivatives of U are taken as the average value over the cell
1678 and with equation (6,2.29):

(au) k fA=k ax A=lli(Ui+l,j+Ui+l,j-l-Ui,j-Ui,j-l) (E6.2.14)

A similar relation is obtained for point B:

fB=k(~B=~(Ui+l,j+ Ui+l,j+l- UiJ- UiJ+I) (E6.2.15)

and the flux contribution through the side AB is given by the sum of the two
equations (E6.2.14) and (E6.2.15) multiplied by ~y.

The contributions of the other sides are obtained in a similar way. For
instance, the flux through BC is given by the sum

gBC ~X = t (gB + gc) ~X (E6,2.16)
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with

(au) k gB = k - =- (Ui+l,j+l + Ui,j+l - Ui,j- Ui+l,j) (E6,2.17)
ay B 2~y

A similar relation is obtained for point C:
(au) k . gc=k ay C="2A:Y(Ui,j+l+ Ui-l,j+l- Ui,j- Ui-l,j) (E6,2,18)

Finally, equation (E6,2.13) becomes, with ~x= ~y,

aUij k Ui+l,j+l+ Ui+l,j-l+ Ui-l,j+l+ Ui-l,j-1-4Uij- 0-+-
at 4~X2

(E6.2.19)

This scheme corresponds to the discretization of Figure 4.4.3 for the Laplace

operator.
Note that the alternative, simpler choice,

(au) k fAB=k - =-(Ui+l,j-Ui,j) (E6.2.20)
ax AB ~x

leads to the standard finite difference discretization of the diffusion equation,
corresponding to Figure 4.4.2:

~+ Ui+l,j+ Ui,j-l + ~~~;,j+ Ui,j+1-4Uij=0 (E6.2.21)
at ~x

The vector version of the divergence relation, written for an arbitrary vector "if,
is also of interest:

J n V. "if dO = ~ s "if. d S (6.2.30)

since it can be applied, particularly for the derivation of equations for cell face
areas and volumes, For a two-dimensional cell, taking "if = x with V. x = 2,
leads to

20= ~s x.dS= ~s(XdY-YdX) (6.2,31)

which reproduces the above relations when a trapezium formula is applied,
Applications to three-dimensional volumes are discussed in the next section,

6.2.3 Three-dimensional finite volume method

In three dimensions the geometrical space is mostly divided into six-sided
hexahedral control volumes (Figure 6.2,7), where the four points forming a
cell face are not necessarily coplanar, or into tetrahedral volumes. Equation
(6.2.2) remains unchanged, but some care has to be exercised in the evaluation
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Figure 6.2.7 Three-dimensional hexahedral control volume

of volumes and cell surface areas in order to ensure that the sum of the
computed volumes of adjacent cells is indeed equal to the total volume of the
combined cells.

Evaluation of cell face areas

An important property of the area vector S attached to a cell face is derived
from the divergence theorem. Equation (6.2.23), with U = I, becomes

~ s dS= 0 (6.2.32)

showing that the outward surface vector of a given face contained in the closed
surface S:

Sface = r d S (6.2.33)
J face

is only dependent on the boundaries of the face. Hence for face ABCD of
Figure 6.2.7 we could apply equation (6.2.7) or other alternatives:

SABCD = ~ (XAC x XBD) (6.2.34)

or

SABCD = ~ [(XAB x XBC) + (XCD x XDA)] (6.2.35)

The last equation expresses the surface vector SABCD as the average of the
surface vectors of the two parallelograms constructed on the adjacent sides
(AB, BC) and (CD, DA). In the general case the two normals will not be in the
same direction, since (ABC) and (CDA) are not in the same plane. Hence. -
equatIon (6.2.35) takes the vector SABCD as the average vector of these two
normals, while equation (6.2.18) expresses SABCD as the vector product of the
two diagonals. Note, however, that the two equations lead to identical results,
even for non-coplanar cell faces (see Problem 6.8).
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Similarly to equation (6.2.35), we have 

SABCD = 4 [(?Bc X ?CD) + ( ?DA X 2~~11 (6.2.36) 

and also, combining opposite instead of adjacent sides, by averaging equations 
(6.2.35) and (6.2.36): 

3 ABCD=$[(jZAB+ hC)x(jsBC+ ZAD)] (6.2.37) 

All these equations are applied in practical computations, the first one 
(equation (6.2.34)) being less expensive in number of arithmetic operations. 

Evaluation of control cell volumes 

Different equations carrbe applied to obtain the volume of the hexahedral cell, 
the most current approach consisting of a subdivision into tetrahedra or 
pyramids (Figure 6.2.8). The volume of the tetrahedron &ABC is obtained by 
applying equation (6.2.30) for a vector Z equal to the position vector j;. We 
obtain, since a l 2 = 3, 

1 
OPABC = - 3 

jf.&! 2 l? * Sfaces (6.2.38) 
PABC 3 faces 

P 

D 4? C 

A 

B 

(a) (b) A 

Figure 6.2.8 Subdivision of an hexahedral volume into tetrahedra or pyramids 
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or
1 - -

OPABC ="3 X(P) " SABC (6.2.39)

if x(P) represents a vector originating in P. This relation results from the fact
that when x(P) lies in the faces containing P, it is orthogonal to the associated
S vector. The only remaining contribution comes from the face ABC opposite
P. Hence with x(P) = XPA

n 1- ( - - ) 1- (- -
~'PABC = "6 XPA' XAB X XBC ="6 XPA' XBC x XCA) (6.2.40)

Equation (6.2.40) can also be expressed as a determinant:

Xp YP ZP 1
0 =.! XA YA ZA 1

(6 2 41)PABC 6 1 . .
XB YB ZB
Xc Yc Zc 1

In a similar way, for a pyramid PABCD, we have

1 ~ -- OPABCD = - x' dS
3 PABCD

(6.2.42)1- -= "3 X(P) , SABCD

Since ABCD is not necessarily coplanar, x(P) has to be estimated by an
appropriate approximation. For instance,

- 1 ( - - - -
) (x(P) ="4 XPA + XPB + XPC + XPD 6.2.43)

and with expression (6.2.34) for SABCD we obtain
n 1 (- - - - ) ( - - )~'PABCD = ~ XPA + XPB + XPC + XPD ' XAC X XBD

(6.2.44)
1 ( - - ) ( - - )= 12 XPA + XPB ' XAC X XBD

If the face ABCD is coplanar, then equation (6.2.44) reduces to

n 1- (- - )~'PABCD = "6 XPA' XAC X XBD (6.2.45)

The volume equations for the pyramids are actually expressed as the sum of
the two tetrahedra,

Referring to Figure 6.2.8, the hexahedron can be divided into three
pyramids, for instance with point D as summit:

OHEX = ODABFE + ODBCGF + ODEFGH (6.2.46)

Dividing each pyramid into two tetrahedra leads to a decomposition of the
hexahedron into six tetrahedra, originating, for instance, in D, as

OHEX = ODABE + ODBFE + ODBCG + ODBGF + ODEFG + ODEGH (6.2.47)
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Extreme care has to be exercised in the evaluation of the tetrahedra volumes,
since the sign of the volumes OPABC in equations (6.2.39)-(6.2.41) depends on
the orientation of the triangular decompositions. In addition, when the cell
surfaces are not coplanar the same diagonal has to be used in the evaluations
of the tetrahedra in the two cells which share this surface, otherwise gaps or
overlaps would occur in the summation of volumes. A useful guideline, in
order to avoid sign errors, consists of applying a right-hand rotation (screw-
driver) rule from the base towards the summit of each tetrahedron.

Another alternative is to decompose the volume of the hexahedron into five
tetrahedra originating in D, for instance, referring to Figure 6.2.8(b) as

OHEX = ODABE + ODBCG + ODEGH + ODBGE + OFBEG (6.2.48)

In this decomposition four tetrahedra have D as a summit and one tetrahedron
originates in point F, opposite to D. Considering the same two points D and F
as references, there is a unique second decomposition into five tetrahedra,
shown in Figure 6.2.8(c):

OHEX = OFACB + OFAEH + OFCHG + OFAHC + ODACH (6.2.49)

For a general hexahedral volume, where points of a same cell face are not
coplanar the two equations (6.2.48) and (6.2.49) will not give identical volume
values. It is therefore recommended to take an average of both.

In this context it is interesting to observe that volumes of hexahedral cells
can also be evaluated from a finite element isoparametric trilinear transforma-
tion, applying a 2 x 2 x 2 Gauss point integration rule, as described in
Section 5.4. Although very tedious to prove analytically, numerical experi-
ments consistently show that this finite element procedure leads to volume
values equal to the average of the equations (6.2.48) and (6.2.49).

An investigation of more elaborate decompositions of hexahedral volumes
in pyramids can be found in Davies and Salmond (1985), while some of the
above-mentioned decompositions are also discussed in Rizzi and Ericksson
(1981) and Kordulla and Vinokur (1983).
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PROBLEMS .
Problem 6.1

Apply the finite volume formula (6.2.2) to the contour ACDEGH of Figure 6.2.4(a)
and derive the discretization for node (i, j) Compare with equation (E6.2.5) when the
variables are defined at the nodes of the control volume, with the side fluxes defined by
the average of the corner points value; that is,

fAC=!(fA+fc)

Problem 6.2

Apply the finite volume method to the contour of Figure 6.2.4(b) and compare the
different assumptions for the evaluation of fluxes at the mid-side. Derive four schemes
by combining the two options for the vertical sides with the two options for the
horizontal sides:

fAB = (Ji+I,j+ Jij)/2

or

fAB = ~(fi+I,j+ Ji+I,j+1 + Ji+I,j-1 + fij+ Ji,j+1 + Ji,j-l)

with
fDA = Ji,j-1

or
fDA = !(2Ji,j-1 + Ji+ l,j-1 + Ji-I,j-l)

with similar expressions for g and for the two other sides.

Problem 6.3

Determine the different formulas obtained in Problem 6.2 when the mesh is Cartesian
and compare with the results of Problem 6.1.
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Problem 6.4

Develop a finite volume discretization for mesh point A (i, i), with the control volume
BCDGHKEF of Figure 6.2.2(b). Compare the results from the evaluation of the side
fluxes by the following three options, written, for instance, for side K(E)F:

IKF ~YKF = l (Ji+ l,j+ 1+ Ji+ l,j-l)(Yi+ I,j+ 1- Yi+ l,j-l) (a)

or

IKF ~YKF = IKE ~YKE + IEF ~YEF

=l (Ji+I,j+ Ji+l,j-I)(Yi+I,j- Yi+I,j-l) (b)
+ l (fi+ I,j+l + Ji+ l,j)(Yi+ I,j+l - Yi+ I,j)

or

IKF~YKF=/E ~YKF=Ji+I,j(Yi+I,j+l-Yi+I,j-l) (c)

Compare the three results for a Cartesian mesh and refer also to Example 6.2.1.

Problem 6.5

Apply the results (6.2.26) in order to derive average values of the first derivatives allax
and allay over the triangle JI2 of Figure 6.2.2(d). Compare with the expressions
obtained in equations (E5.3.21) and (E5.3.22) and with the results of Problem 5.11.
Note that the results are identical and comment on the reason behind the validity of the
derivation by the finite element method with linear triangles.

Problem 6.6

Consider the two-dimensional diffusion equation treated in Example 6.2.3 with
diffusive flux components 1= kaulax and g = kaulay, where k is a function of the
co-ordinates. Construct the discrete equation by the finite volume approach on the
mesh of Figure 6.2.2(a), considered as Cartesian, by generalizing the development of
Example 6.2.3. Consider the quadrilateral control surface ABCD for the mesh point
l(i, j) and consider the values of k defined at the corners of the cell, that is in
A, B, C, D. If necessary, define

kAB = l (kA + kB)

Problem 6.7

Consider the diffusion equation of the previous problem and apply it to the cell
BCDGHKEF of Figure 6.2.2(b), considered as Cartesian, with constant k. Define the
derivatives on the cell sides by one-sided formulas from inside the control cell. Apply
successively the three options of Problem 6.4 and compare with the results of
Example 6.2.3. Show in particular that options a, band c reproduce the schemes
derived in this example.
Hint: For a point F, define the derivatives as

(~)F=(Ui+I,j+l- Ui,j+I)/~x

(~)F= (Ui+I,j+l- Ui+I,j)/~y

and similar relations for the other points.
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Problem 6.8

Show that equations (6.2.35)-(6.2.37) lead to results identical to the simplest expres-
sion (6.2.34).
Hint: Apply vector relations such as XAC = XAB + XBC and the properties of the vector
products.

Problem 6.9

Show that the relation (6.2.37) for the area of a quadrilateral element ABCD can be
obtained by applying a 2 x 2 Gauss-point integration rule with bilinear interpolation
functions to the area integral (6.2.33).
Hint: Apply the integration techniques of Section ).4 together with relation (5.4.8). In
this relation dO is the magnitude of the vector dS of equation (6.2.33). Calculate the
Jacobian matrix with the isoparameteric transformation.

Problem 6.10

Apply equation (6.2.31) to the quadrilateral ABCD of Figure 6.2.5 and take point A as
the origin of the position vector X. Show that the contour integral reduces to the
contributions along BC and CD with x = XAC and that

20 = XAC' r d S
JBCD

By working out the integral, obtain relation (6.2.7):

OABCD = l(~XAC ~YBD - ~XBD ~YAC)

Hint: Observe that, with A as origin, the position vector is aligned with sides AB and
AD and hence normal to the vector d S. Therefore there is no contributions from these
two sides.

Problem 6.11

Repeat Problem 6.10 for triangle ABC of Figure 6.2.5 and show that we can write

20ABC = XAB. r dS
J BC

obtaining

OABC = l (~XAB ~YBC - ~XBC ~YAB)

Problem 6.12

Consider the quadrilateral BDHE in Figure 6.2.6(b) and apply relations (6.2.29) in
order to define the average value of the x-derivative of a function U. Consider YE = Yo
and obtain (au) (UE - UD)a; BDHE = (XE - XD)

Comment on the accuracy of this formula when applied to point A.

Problem 6.13

Repeat Problem 6.12 for the contour BCDGHKEF of Figure 6.2.6(b) by applying
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equations (6.2.26). Obtain the following approximation:

(au) (UE - UD) IlYBA (UF- Uc) IlYAH (UK- Ua)
a-; = (XE-XD)+~ (XF-Xc)+~ (XK-Xa)

Derive also the corresponding expression for a Cartesian mesh.

Problem 6.14

Apply the upwind flux evaluation (equation (6.2.18» to derive a finite volume scheme
for the cell GHKEFBCD of Figure 6.2.2(b), considered as Cartesian. Compare the
obtained discretization with the results of Example 6.2.2.

Problem 6.15

Repeat the calculations of Example 6.2.3 for the arbitrary finite volume mesh of Figure
6.2.2(a).

Problem 6.16

Show that the integral conservation law over the one-dimensional domain a ~ x ~ b,
applied to

~+~=o
at ax

with the condition f(b) = f(a), reduces to the condition:

1: u dx

is constant in time.
Apply this condition to a discretized x-space, with an arbitrary mesh point

distribution, and show that this condition reduces to

! 2:; llu;(x;+1 - Xi-I) = 0
;

where

n+1 n (au;)Ilu; = U; - U; = at Ilt

Hint: Apply a trapezoidal rule to evaluate the integral
a 1 b- udx=O
at a

and rearrange the sum to isolate the u;-terms.



PART III: THE ANAL YSIS OF
NUMERICAL SCHEMES

The reader who has followed the steps of the previous chapters in the
development of a numerical simulation of a flow problem is, at this stage,
faced with a set of discretized equations. This has now to be analysed for
consistency, accuracy, stability and convergence.

Chapter 7 will present basic definitions and simplified model equations to
serve as a basis for the illustration of various methods of analysis. Chapters
8-10 will be devoted to the problem of the analysis of stability and accuracy of
the numerical scheme. This is a most fundamental step in the development of
an algorithm, and constitutes an essential aspect of the numerical simulation.
As soon as a scheme has been defined the first task is to analyse its stability and
accuracy. Various methods are available, the most popular and useful being
the Yon Neumann method based on a Fourier analysis in space (Chapter 8).
Next to the assessment of stability, this approach also allows a detailed
investigation of the accuracy and the error structure of the scheme.

A second method (Chapter 9) is based on the equivalent differential
equation and the obtained truncation error. The method is attributed to Hirt
(1968) and Yanenko and Shokin (1969). It leads mostly to sufficient conditions
for stability and to the establishment of the order of accuracy of the scheme.
However, it delivers information on error and accuracy which is partly
complementary to that obtained by the Yon Neumann method. This approach
does not allow us to define the influence of boundary conditions on the
stability of the scheme but has the advantage of allowing the non-linear
contributions to the error generation in non-linear equations to be distin-
guished. Also, as will be seen in Chapter 9, conditions can be derived for the
establishment of whole families of schemes having a predetermined support
and order of accuracy.

A third method, to be discussed in Chapter 10, is the matrix method. This is
a most general approach, whereby the scheme is written as a system of
first-order differential equations in time with, in the right-hand side, the matrix
operator representing the discretized space differential operators, acting on the
vector of mesh point variables Uj. This matrix also contains the numerical
boundary treatment, and the stability is investigated through its eigenvalue
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spectrum. This approach is therefore general, including the influence of the
boundary conditions, but its practical application is often made difficult by the
impossibility of obtaining analytically the eigenvalues of the matrix. The
precise definition of stability is also shown to have a profound impact on the
stability conditions imposed on the parameters of the schemes and the
predominant role of the Yon Neumann method will be stressed.

If the Yon Neumann method is based on a decomposition of the numerical
solution in Fourier modes, implying periodic boundary conditions, the matrix
method is based on a decomposition in eigenmodes of the space-discretization
operator, including the boundary conditions, and on the properties of its
eigenvalues. This generalizes the Yon Neumann method and it is shown that
both methods are identical for periodic boundary conditions.

A third decomposition of the numerical solution is defined by the normal
mode representation. This decomposition is of a more general form than the
one based on the eigenmodes of the space discretization and allows a detailed
investigation of the influence of boundary conditions on stability. This
representation leads, in addition, to the analysis of the spatial error propag-
ation in stationary schemes or of resolution algorithms based on selected
sweep directions through the mesh. These various topics are also illustrated
with the important model of the one-dimensional convection-diffusion
equation.



Chapter 7

The Concepts of Consistency, Stability
and Convergence

In order to analyse the properties of numerical schemes and sustain the general
procedures to be presented in the following chapters we will illustrate them on
typical and representative examples of the various forms of equations which
can result from the large variety of mathemat~cal flow models. Since all fluid
flow equations can be classified into elliptic, parabolic or hyperbolic, typical
examples of each of them will cover the whole range of possible systems. The
non-linearity of most of the flow models adds an additional level of difficulty,
and its treatment and influence will have to be dealt with separately.

7.1 MODEL EQUATIONS

7.1.1 One-dimensional simplified models

Within the one-dimensional approximation the system of flow equations can
be written as follows:

~+~=o (7.1.1)

a(pu) a 2 a ( au)at+a-.x(Pu +p)=a-.x J1.a; (7.1.2)

l ae ae] au au a ( aT)p -+u- = -P-+T-+- k- +qH (7.1.3)
at ax ax ax ax ax

where equation (1.5.15) for the internal energy is applied.
(1) If the velocity u(x, t) is considered as constant, equation (7.1.1) takes

the typical form of a linear convection equation:

ap apat + u a; = 0 (7.1.4)

describing the transport of mass (P) by a flow of velocity u. This is a typical
first-order hyperbolic equation in (x, t), and can also be viewed as describing a
wave of amplitude p propagating with a wave speed equal to u.
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(2) If the energy equation is considered, either in a fluid at rest or in a very
slowly moving fluid, we can neglect the terms containing the velocity in
equation (7.1.3). We then obtain the one-dimensional heat conduction equa-
tion, with e = cV T, where cv is the specific heat at constant volume, and for
constant conductivity k,

aT a2Tat = a a? + q (7.1.5)

with

ka = - (7.1.6)
PCv

This equation is a typical parabolic equation in time, in the (x, t) space, for
sources which do not depend on the derivatives of the temperature. It describes
a diffusion of heat in the medium.

(3) If the velocity is not small but the flow is incompressible then from
equation (7.1.1) u is constant. The equation for the temperature then becomes

aT aT a2T
at+uax=aa?+q (7.1.7)

This equation is still parabolic in time in the (x, t) space but is called the
convection-diffusion equation, because of the simultaneous presence of
convection by the velocity u and diffusion through the diffusivity coefficient a.
The dimensionless ratio UL/a, where L is a representative length, is called the
Peclet number, and plays the same role as the Reynolds number UL/v for the
momentum equation, as a measure of the ratio of the convective flux to the
diffusive flux. Actually, we have

pe=~= (~) (Yf) = (~) . Re (7.1.8)

where (v/a) is proportional to the Prandtl number (see Section 1.5).
The influence of this number is considerable, since at very high values of the

Peclet, or Reynolds, numbers the equation will be mostly of a convective
nature and therefore close to hyperbolic, while in the opposite situation, for
very low values of Pe, equation (7.1.7) is close to the purely diffusive equation
(7.1.5). At intermediate values of Pe the presence of both contributions poses
severe problems of accuracy to the numerical simulation, and this will be
discussed in Chapter 10.

Note also that the general form of a transport equation for a scalar quantity
u, as given by equation (1.1.7), reduces to the same form as equation (7.1.7) in
the one-dimensional case. That is,

au au a2u
-at + a ax= a a? + q (7.1.9)

where a is the convection velocity. Hence equations (7.1.7) or (7.1.9) represent
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the most general form of the one-dimensional convection-diffusion transport
equation.

(4) For time-independent conditions the transport equation becomes

au a2ua ~ = a a? + q (7.1.10)

The solution of both equations (7.1.10) and (7.1.9) should_be identical for a
stationary field u and time-independent boundary conditions.

(5) If the effect of the pressure gradient on the momentum equation can be
neglected or considered as an external force equation (7.1.2) becomes

au au a2u
at+u~=Pa? (7.1.11)

This equation has the structure of a convection-diffusion equation but is
non-linear. This is known as Burger's equation, and contains the full Bur:
non-linearity of the one-dimensional flow equations. This equation, as well as
the following one, are very often used as test cases for numerical schemes since
a large number of exact solutions are known (Whitham, 1974).

(6) If viscosity can be neglected we obtain the non-linear, hyperbolic
equation:

au au
at+ u ~=O (7.1.12)

known as the 'inviscid' Burgelii equation. '&..,

7.1.2 Two-dimensional simplified models

A variety of simplified linear models for flow and temperature evolution can be
obtained through some of the following assumptions.

Incompressible, potential flows

In this case it is seen from equation (2.9.5) that the potential cP satisfies the
Laplace equation:

a2cP a2cP
a?+a:v-:z=0 (7.1.13)

This is a typical elliptic equation, describing an isotropic diffusion in the (x, y)
space.

(7) Note that a similar equation is obtained for the temperature field in a
medium at rest and for stationary conditions. In the presence of source terms
we obtain the Poisson equation for constant conductivity coefficients k:

a2T a2T 1
axz+a?=-kqH (7.1.14)
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This same equation is obtained, under similar assumptions, from the general
transport equation (1.1.7) for the quantity u. The streamfunction equation for
incompressible flows has also the same structure as equation (7.1.14).

(8) If the problem is time-dependent the heat conduction equation
becomes, for inviscid flows and for a homogeneous conductivity,

aT aT aT (a2T a2T)-at + u ax + v -ay = a a? + a? + q (7.1.15)

This is a form of the two-dimensional convection-diffusion equation in a flow
of velocity v(u, v).

This equation is parabolic in time in the (x, y, t) space. For stationary
coefficients and boundary conditions the numerical solution of equation
(7.1.15) in a medium at rest (u = v = 0) should approach, at large time values,
the solution of the stationary equation (7.1.14).

Supersonic, steady, two-dimensional potential flow

If we consider a stationary potential flow predominantly in the x-direction,
with a nearly constant supersonic velocity, equation (2.9.25) reduces in two
dimensions to an equation of the form

~- K2 ~= 0 (7.1.16)

with K2 = (M;' - 1), M«o being the upstream Mach number of the flow. This
equation is hyperbolic in the (x, y) space and is known as the two-dimensional
wave equation. Observe that the same equation is elliptic at subsonic speeds,
since K2 is then negative. The fact that this transition can occur for non-linear
potential flows makes the physical problem much more difficult. (See Volume
2 for a detailed presentation of various methods developed in order to solve
the transonic potential flow problem.)

The above types of equations are representative of most of the approxima-
tion models occurring in practice describing flow and temperature behaviour.

7.2 BASIC DEFINITIONS: CONSISTENCY, STABILITY,
CONVERGENCE

Let us consider one of the representative model equations, for instance the
convective, hyperbolic equation (7.1.4), written here as follows:

au au
ai+ a~=O (7.2.1)

where u is the unknown function of (x, t) and a the convection speed, or the
wave speed according to the interpretation given to equation (7.2.1). In the
following, when no danger of ambiguity can arise, we will also use a shorthand
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notation, where the derivatives are indicated as subscripts. Here we will write
for equation (7.2.1)

Ut + aux = 0 (7.2.2)

Considering an initial boundary value problem this equation has to be
substantiated by the following initial and boundary conditions for a > 0:

t = 0 u(x,O) = f(x) 0 ~ x ~ L (7.2.3)
x = 0 u(O, t) = g(t) t ~ 0

In order to apply a finite difference method to this equation we could select,
for instance, a central, second-order difference formula for the discretization
of the space derivative Ux at mesh point i after subdivision of the space domain
into cells of length dX. This leads to the semi-discrete scheme (also called
method of lines):

(Ut)i=-- 2a (Ui+l-Ui-l) (7.2.4)

dX

The left-hand side represents the time derivatives evaluated at point i, and the
next step is to define a discretization in time. This implies the replacement of
(Ut)i by a discrete form but also a decision as to the time level at which the
right-hand side will be evaluated.

Selecting a forward difference formula for (Ut)i, the simplest scheme would
be obtained with an evaluation of the right-hand side of equation (7.2.4) at
time step n; such a method is known as the Euler method for the time
integration of ordinary differential equations defining Uin = U(Xi, ndt):

UII+l - UII a1 '=--(U7+1-u7-1) (7.2.5)
dt 2dX

This is an explicit scheme, since each discretized equation contains only one
unknown at level (n + 1).

Evaluating the right-hand side at level (n + 1) leads to the implicit scheme,
known as the backward or implicit Euler method:

n+l nUi - Ui= - ~ (UII+ l l- UII_+l l
) ( 7.2.6 )dt 2dX 1+ 1

where three unknowns appear simultaneously at time level (n + 1).
Note that this equation could also be obtained from equation (7.2.4) by

applying a backward difference in time for the discretization of Ut. Equation
(7.2.6) leads to a system of equations with a tridiagonal matrix, and we will
present in Chapter 12 an algorithm leading to an efficient solution of
tridiagonal systems.

From the definitions of the order of accuracy of the finite difference
formulas we expect schemes (7.2.5) and (7.2.6) to be first order in time and
second order in space at points i and time level n. Another alternative, with a
first-order approximation for the space derivative, would be obtained with a
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backward difference in space, leading to the semi-discrete form:

a
(Ut)j= -":1:X(Uj- Uj-l) (7.2.7)

With a forward difference in time we obtain the following explicit scheme,
known as the first-order upwind scheme:

U!'+ 1 - U!' a
"=--(u7-u7-1) (7.2.8)

~t ~x

The corresponding implicit version, evaluating the right-hand side at (n + 1),
would be

n+l n~~-A~~ = - fx (Ujn+ 1 - Ujn-+ll) (7.2.9)

Let us investigate the behaviour of schemes (7.2.5) and (7.2.8) on a simple
example. We consider an initial solution of triangular form illustrated in
Figure 7.2.1:

f(x) = 0 x ~ - 0.2

x= 1 + 2" - 0.2 ~ x < 0

(7.2.10)
x= 1 - - 0 ~ x ~ 0.2

2

= 0 x ~ 0.2

and calculate the numerical solution of the convection equation for a = 1 and
~x = 0.1. Observe that the exact solution a of Ut + Ux = 0 is a pure translation,

and hence

a(x,t)=f(x-t) (7.2.11)

Writing scheme (7.2.5) under the form

n+l n U ( n n ) a ~tUj = Uj --2 Uj+l- Uj-1 u=- (7.2.12)
~x

the scheme is seen to depend only on the parameter u, called the Courant
number. We obtain the results shown in Figure 7.2.1, after two, three and four
time steps for u = 1 and an initial solution centred around x = 1.

As can be seen, the simple scheme (7.2.12) leads to an increasing error when
compared with the exact solution. A similar situation would be obtained for
any other value of u (see also Problem 7.1), and the scheme is therefore
unstable. The same test can be performed with scheme (7.2.8), which can be
written as

Ujn+l = Ujn_u(ujn-u7-1) (7.2.13)
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Two time steps
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Three time steps
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Figure 7.2.1 Numerical solution of the convection problem
with scheme (7.2.5), after two, three and four time steps, for an

initial triangular shape and (] = I
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First order upwind scheme (}" = 0.5
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First order upwind scheme =
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Figure 7.2.2 Numerical solution of the convection problem
with scheme (7.2.8), after three time steps, for an initial
triangular shape. (a) Solution for a Courant number (J = 1/2;

(b) solution for a Courant number (J = 3/2

For (J = 1/2 we obtain the numerical solution, after three time steps, shown in i
Figure 7.2.2(a). As can be observed, the numerical solution follows the exact
solution, although with poor accuracy. Repeating the same calculation with
(J = 3/2 leads to an unstable numerical solution, as can be seen from!
Figure 7.2.2(b), also after three time steps (see also Problems 7.2 and 7.3).

IThis is a typical example of a conditionally stable scheme since its stability

depends on the parameter (J.
These elementary examples, which can be obtained by hand calculations,

show nevertheless the extreme complexity of numerical schemes and raise
some basic questions with regard to the analysis of discretized equations:

(1) What are the conditions we have to impose on a numerical scheme in
order to obtain an acceptable approximation to the differential problem?
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(2) Why do these two simple schemes have completely different behaviours,
and how can we predict their stability limits?

(3) For a stable calculation, such as shown in Figure 7.2.2(a), how can we
obtain quantitative information on the accuracy of the numerical simula-
tion?

In order to provide answers to these questions it is necessary to define more
precisely the requirements to be applied to a numerical scheme. These
requirements are defined as consistency, stability and convergence. These three
conditions cover different aspects of the relations between the discretized
equations, the numerical solution and the exact, analytical solution of the
differential equation. They are summarized in Figure 7.2.3, which expresses,
in short, that the consistency condition defines a relation between the
differential equation and its discrete formulation; that the stability condition
establishes a relation. between the computed solution and the exact solution of
the discretized equations; while the convergence condition connects the
computed solution to the exact solution of the differential equation.

CONSISTENCY

CONDmON ON S1RUCIURE OF NUMERICAL FORMULA lION

DISCRETlZEDEQUA1I0N DIFFEREN11ALEQUA1I0N

STABILITY

CONDmON ON SOLU110N OF NUMERICAL SCHEME

NUMERICAL SOLU110N EXACT SOLU110N OF
DISCRETIZED EQUA1I0N

CONVERGENCE

CONDmON ON SOLU110N OF NUMERICAL SCHEME

NUMERICAL SOLU1I0N""" EXACT SOLU110N OF
DIFFEREN11AL EQUA1I0N

Figure 7.2.3 Relations between consistency, stability and convergence
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7.2.1 Consistency

Consistency expresses that the discretized equations should tend to the
differential equations to which they are related when ~t and ~x tend to zero.
In order to check for consistency the various function values Ujm occurring in
the discretized equations are developed in a Taylor series around the value Uin
and the high-order terms are maintained in substituting these developments
back in the numerical equations.

Let us illustrate this by the example of scheme (7.2.5). If the function u(x, t)
is sufficiently smooth we can write the following Taylor expansions:

n+ I n A ( ) n ~t2 ( )n 2 4Ui =Ui+~tUti+2Utti+'" (7..1a)

n n A ( ) n ~x2 ( )n ~X3 ( ) n 2 4Ui+l=Ui+~XUXi+2 Uxxi+6 Uxx.l:i+'" (7..1 b)

n n A ( ) n ~x2 ( ) n ~X3 ( ) nUi-1 = Ui - ~x Ux i +2 Uxx i -6 Uxxx i + ... (7.2.14c)

where the x and t subscripts indicate partial derivatives. Substituting these
developments in equation (7.2.5) we obtain

n+1 n n nUi - Ui + Ui+ 1- Ui-1 ( ) n~t a 2~x - Ut + auK i

~t n ~x2 2 4= +T(Utt)i +6 a(Uxxx)i+O(~t, ~x) (7.2.15)

It is clearly seen from the above equation that the right-hand side vanishes
when ~t and ~x tend to zero, and therefore scheme (7.2.5) is consistent. As !
expected, the accuracy of the scheme is first order in time and second order in - jspace, since the right-hand side goes to zero as the first power of ~t and the '

second power of ~x. Note that if a relation is established between ~t and ~x,
when they both tend to zero, then the overall accuracy of the scheme might be
different. If ~t/ ~x is kept constant, then the scheme has first-order accuracy,
while it would be second order if ~t/ ~X2 were kept constant.

The consistency equation (7.2.15) can be interpreted in two equivalent ways:

(I) The values Uin are considered as exact solutions of the discretized
equation. In this case, denoting by Uin the exact solution of the numerical
scheme, equation (7.2.15) reduces to,

( - - )n ~t ( ) n ~X2 ( )n 0 2 4
ut+auxi=-T utti-a6 Uxxxi+ (~t,~x)(7.2.16)

showing that the exact solution of the difference equation does not satisfy
exactly the differential equation at finite values of ~t and ~x (which is
always the case in practical computations). However, the solution of the
difference equation satisfies an equivalent differential equation (also
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called a modified differential equation), which differs from the original
(differential) equation by a truncation error represented by the terms on
the right-hand side.

In the present example the truncation error £T is equal to

£T = - ~ (Utt)jn - a ~ (uxxx)jn + 0(~t2, ~x4) (7.2.17)
2 6

and can be written in an equivalent form, up to higher-order correction
terms, by applying the equivalent differential equation (7.2.16) to elimi-
nate the time derivatives; for instance,

(Ut)jn = - a(ux)jn + O(~t, ~X2) (7.2.18)

and
(Utt)jn = - a~uxt)jnn+ O(~t, ~X2; (7.2.19)

= + a (uxx)j + O(~t, ~x )

Hence the truncation error can be written as

£T = - ~ a2(uxx)jn - a ~ (uxxx)jn + 0(~t2, ~X2) (7.2.20)
2 6

Up to the lowest order the equivalent differential equation becomes

~t 2 2 2 2 2Ut + aux = - - a . Uxx + O(~t , ~x ) (7. . 1)

2

and this shows why the corresponding scheme is unstable. Indeed, the
right-hand side represents a viscosity term, with a negative viscosity
coefficient equal to [ - (~tI2)a2]. A positive viscosity is known to damp

oscillations and strong gradients; a negative viscosity, on the other hand,
will amplify any disturbance and, since the numerical solution satisfies
the above equation, its behaviour is unstable (see also Problem 7.4).
Therefore the determination of the equivalent differential equation and,
in particular, the truncation error provides essential information as to the
behaviour of the numerical solution, and will generally lead to necessary
conditions for stability (see Chapter 9).

The condition for consistency can be restated as follows: a scheme is
consistent if the truncation error tends to zero for ~t, ~x tending to zero.

The order of accuracy of a scheme is also defined by the truncation
error. If the truncation error is of the form

£T = O(~tq, ~xP) (7.2.22)

where p and q are the lowest values occurring in the development of the
r truncation error, the scheme is said to be of order q in time and p in

space. The consistency condition can also be stated as the requirement
that the order of accuracy in time and (or) in space, should be positive for
any combinations of ~t and ~x when they both tend to zero.
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The second interpretation of the consistency condition is obtained as
follows

(2) The values Ujn in equation (7.2.15) are exact solutions of the differential
equation, that is, Ujn = iI(i dX, n dt), where iI(x, t) is the analytical
solution. Equation (7.2.15) becomes

-n+1 -n -n -n
Uj -Uj Uj+I-Uj-l- (7223)+a--tT ..

dt 2dX

which shows that the exact values ill' do not satisfy the difference
equations exactly but are solutions of a modified discrete equation with
the truncation error in the right-hand side.

We can also view equation (7.2.23) as a definition of the truncation
error: the truncation error is equal to the residual of the discretized
equation for values of iljn equal to the exact, analytical solution.

7.2.2 Stability

The difference scheme should not allow errors to grow indefinitely, that is, to
be amplified without bound, as we progress from one time step to another. A
condition for stability can be formulated by the requirement that any error £jn
between U and u should remain uniformly bounded for n -+ IX) at fixed dt. ;,

Actually, early definitions of stability (O'Brien et al., 1950) were defined on
the basis of non-amplification of the round-off errors.

If we define the error £ as the difference between the computed solution and.
the exact solution of the discretized equation

£jn = Ujn - Ujn (7.2.24)

the stability condition can be written as

lim I £jn I ~ K at fixed dt (7.2.25)
n-~

with K independent of n. This stability condition is a requirement solely on the
numerical scheme and contains no condition on the differential equation.
Actually, the stability condition (7.2.25) has to be valid for any kind of error.
However, this condition does not ensure that the error will not become
unacceptably large at fixed intermediate times tn = ndt. Practical examples
showing that condition (7.2.25) is not always acceptable will be discussed in
Chapter 10.

Therefore a more general definition of stability, introduced by Lax and
Richtmyer (1956) and developed in Richtmyer and Morton (1967), is based on
the time behaviour of the solution itself instead of the error's behaviour. This
stability criterion states that any component of the initial solution should not
be amplified without bound. In order to express the mathematical statement of
this condition the schemes have to be written in matrix or operator form as
follows.

-,
'"

"c
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All the unknowns, at every mesh point, at a given time level, are grouped
into a vector, say U, defined as follows at time n.1t:

u7

n

Un= ~;:l (7.2.26)
U;
n

U;+l

As a function of Un the discretized scheme can be written into the operator or
matrix form:

Un+l = C. Un (7.2.27)

where the operator C is a function of the time step .1t and mesh size .1x.

Example of scheme (7.2.12): u;n+l = u;n - U(U7+1 - U7-1)/2

The matrix form of this scheme is easily seen to be defined by tpe operator:
n. . . U;-l

u/2 I - u/2
GUn = u/2 1 - u/2 u;n (7.2.28)

u/2 1 - u/2
0 .. . u7+1

.. .

Example of scheme (7.2.13): uf'+1 = u;n - u(u;n - U7-1)

In this case the operator C takes the following form:

. . O.
u 1 - U U7-1

GUn = U 1 - U u;n (7.2.29)

U I-u U7+1
0 . . .

Example of implicit scheme (7.2.6): u;n+l = u;n - u/2(u;~+; - U;~+ll)

For implicit schemes it is somewhat more difficult to obtain the matrix form of
the operator C explicitly, but it can be defined formally in a straightforward
way by writing first the scheme as an operator on Un+ I. For scheme (7.2.6) this
leads to an expression of the form

B. Un+1 = Un (7.2.30)

I
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. . . .
U,,+I

B ' V"+I= -u/2 1 +u/2i;11 (7231)- u/2 1 + u/2 U,. .
- U / 2 1 + u/ 2 u"+ I

'-+:I

:,
.\

The operator C is defined by the inverse of B, that is,

C= B-1 (7.2.32)

Example o/implicit scheme (7.2.9): UJ'+I = Ui" - U(Ui,,+1 - Ui"-+C)

In this case the B matrix has the following structure:

I .
t, ~ . . :+1
it" oi . u.
i""1' B' V" + I = -u 1 + U u:..-l1 (7.2.33)
, !

-u l+u
1 ,,+1-u +U Ui+1

and C = B-1. The stability condition can now be stated as follows. If UO
Irepresents the initial solution at time t = 0 then, by repeated action of the

operator C, we have
Vi = C. UO I
V2 = C. Vi = CCUO = (C)2 . UO

: (7.2.34)

V" = (C)'" UO

where (C)" denotes the operator C to the power n.
In order for all V" to remain bounded and the scheme, defined by the

operator C, to remain stable the infinite set of operators (C)" has to be
uniformly bounded. That is, a constant K exists, such that

II (C)" II < K for 0 < J:lt < T (7.2.35)

0 ~ n J:lt ~ T i
for fixed values of T and T and for all n. This condition implies the definition I

of some norm in the considered functional space; for instance, a Hilbert norm ,
in the space of square integrable functions. l
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7.2.3 Convergence-,

The numerical solution Uin should approach the exact solution u(x, t) of the
differential equation at any point Xi = i~x and time tn = n~t when ~X and ~t
tend to zero, that is, when the mesh is refined, Xi and tn being fixed. This
condition implies that i and n tend to infinity while ~X and ~t tend to zero,
such that the products (i~x) and (n~t) remain constant. This condition for
convergence of the numerical solution to the exact solution of the differential
equation expresses that the error

ff = Uin - u(i~x, n~t) (7.2.36)

satisfies the following convergence condition:
lim I fin I = 0 at fixed values of Xi = i~x and tn = n~t (7.2.37)

.1/ -+ 0

.1x -+ 0

Following Richtmyer and Morton (1967) the convergence condition can also
be restated as a condition on C as follows:

lim II[C(~t)]nuo- U(t) II =0 (7.2.38)
.1/ -+ 0
n-+~

with n~t = t fixed. The notation II . II indicates the selected norm.
Clearly, the conditions of consistency, stability and convergence are related

to each other, and the precise relation is contained in the fundamental
Equivalence Theorem of Lax, a proof of which can be found in the
now-classical book of Richtmyer and Morton (1967).

v For a well-posed initial value problem and a consistent discretization

scheme, stability is the necessary and sufficient condition for convergence.
This fundamental theorem shows that in order to analyse a time-dependent

or initial value problem two tasks have to be performed:

(1) Analyse the consistency condition; this leads to the determination of the
order of accuracy of the scheme and its truncation error.

(2) Analyse the stability properties; this leads, in addition, to detailed
information on the frequency distribution of the error, that is, its
behaviour as a function of the frequency content of the computed
solution.

From these two steps convergence can be defined without additional analysis.
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PROBLEMS

Problem 7.1
Obtain the results of Figure 7.2.1 by applying successively scheme (7.2.5) under the
form (7.2.12) for (] = 1. Extend the calculation up to five time steps. Repeat the same
calculations for (] = 1/2 and (] = 3/2 and observe that in all cases the scheme is unstable.

Problem 7.2
Obtain the results of Figure 7.2.2 for the same initial solution as in the previous i.
problem for scheme (7.2.13) with (] = 1/2 and (] = 3/2. Repeat the calculation with (] = 1
and observe that we obtain numerically the exact solution.

Problem 7.3
Apply scheme (7.2.13) with (] = 1/2 to the same test case as in Problem 7.2 with
~x = 0.05 and ~x = 0.025. Compare the numerical solutions after four, eight and

sixteen time steps.

Problem 7.4
Determine the equivalent differential equation and the truncation error for scheme
(7.2.13). Show that it is stable for (] ~ 1.

Problem 7.5
Apply a generalized trapezium formula in time to the central discretized space
derivative of the linear convection equation Ut + aux = 0

n+l n n+l n+\ n n
Ui -Ui 8 Ui+\ -Ui-l (1 8) Ui+\-Ui-\_ O+ a+ - a-

~t 2~x 2~x

with 8 as free parameter.Apply a Taylor series expansion to obtain the truncation error and show that the

scheme is unstable for 8 < 2:.
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Chapter 8

The Von Neumann Method for
Stability Analysis

Various methods have been developed for the analysis of stability, nearly all of
them limited to linear problems. However, even within this restriction the
complete investigation of stability for initial, boundary value problems can be
extremely complicated, particularly in the presence of boundary conditions
and their numerical representation.

The problem of stability for a linear problem with constant coefficients is
now well understood when the influence of boundaries can be neglected or
removed. This is the case either for an infinite domain or for periodic
conditions on a finite domain. In the latter case we consider that the
computational domain on the x-axis of length L is repeated periodically, and
therefore all quantities, the solution, as well as the errors, can be developed in
a finite Fourier series over the domain 2L. This development in the frequency
domain (in space) forms the basis of the Von Neumann method for stability
analysis (Sections 8.1 and 8.2). This method was developed in Los Alamos
during World War II by Yon Neumann and was considered classified until its
brief description in Cranck and Nic'flolson (1947) and in a publication in 1950
by Charney et at. (1950). At present this is the most widely applied technique
for stability analysis, and furthermore allows an extensive investigation of the
behaviour of the error as a function of the frequency content of the initial data
and of the solution, as will be seen in Section 8.3. The generalization of the
Yon Neumann method to multidimensional problems is presented in Section
8.4.

If the problem of stability analysis can be treated generally for linear
equations with constant coefficients and with periodic boundary conditions, as
soon as we have to deal with nop-constant coefficients and (or) non-linear
terms in the basic equations the information on stability becomes very limited.
Hence we have to resort to a local stability analysis, with frozen values of the
non-linear and non-constant coefficients, to make the formulation linear. In
any case, linear stability is a necessary condition for non-linear problems but it
is certainly not sufficient. We will touch on this difficult problem in Section
8.5.

Finally, Section 8.6 presents certain general techniques in order to obtain the
stability conditions from the Yon Neumann analysis.

283
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8.1 FOURIER DECOMPOSITION OF THE ERROR I

If u;n is the exact solution of the difference equation and u;n the actual
computed solution the difference might be due to round-off errors and to
errors in the initial data. Hence,

u;n = u;n + £;n (8.1.1)

where £;n indicates the error at time level n in mesh point i. Clearly, any linear
numerical scheme for uf is satisfied exactly by u;n, and therefore the errors e;n
are also solutions of the same discretized equation.

In order to present the essentials of the method we will first refer to the
previous examples. Considering scheme (7.2.5) and inserting equation (8.1.1)
leads to

,-;1'+1_,-;1' ..1'+1_..1' a au/ u/ ~/ ~/ ( n r,n ) ( n n).1t + .1t = - u:x: u;+ 1 - U;-I - u:x: e;+ 1 - e;

(8.1.2) ,
I

Since u;n satisfies exactly equation (7.2.5) we obtain the equation for the errors
..1'.
.., .

e1'+I-£1' a-!._-":;i~ = - u:x: (e7+ 1 - £7-1) (8.1.3)

which is identical to the basic scheme. Hence the errors ef do evolve over time
in the same way as the numerical solution uf. !

The general demonstration of this property is obvious when the operator '

Iform (equation (7.2.27» is applied, considering the operator C to be linear. If
en designates the column vector of the errors at time level n:

, ..n
~;-I(

n n (8 4 ' e = e; .1. ) ..

n
£;+1

relation (8.1.1) can be written, with [;n indicating the exact solution,

Un = [;n + en (8.1.5)

Inserting this equation into the basic scheme leads to

[;n+1 + en+1 = c[;n + Cen (8.1.6)1

or

en+1 = Cen (8.1.7)

by definition of [;n as a solution of
[;n+ 1 = c[;n (8.1.8)
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Hence time evolution of the error is determined by the same operator C as the
solution of the numerical problem.

If the boundary conditions are considered as periodic the error tin can be
decomposed into a Fourier series in space at each time level n. Since the space
domain is of a finite length we will have a discrete Fourier representation
summed over a finite number of harmonics.

In a one-dimensional domain of length L the complex Fourier representa-
tion reflects the region (0, L) onto the negative part (- L, 0), and the
fundamental frequency corresponds to the maximum wavelength of
Amax = 2L. The associated wavenumber k = 211"/A attains its minimum value
kmin = 1I"/L. On the other hand, the maximum value of the wavenumber kmax
of the finite spectrum on the interval (- L, L) is associated with the shortest
resolvable wavelength on a mesh with spacing ~X. This shortest wavelength is
clearly equal to Amin = 2~x (see Figure 8.1.1), and consequently, kmax = 11"/ ~X.

Therefore with the mesh index i, ranging from 0 to N, with Xi = i . ~X and

~x=L/N (8.1.9)

all the harmonics represented on a finite mesh are given by

kj= jkmin=j i = j ~ j= 0, 1,2, ..., N (8.1.10)

with the maximum value of j being associated with the maximum frequency.
Hence with kmax = 11"/ ~X the highest value of j is equal to the number of mesh

I

Errordistribution

/
I

Figure 8.1.1 Fourier representation of the error on the interval (- L, L)

i
I

I
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intervals N. Any finite mesh function, such as £f' or the full solution Uin, will be
decomposed into a Fourier series as

N N
£f'= ~ EJ'elkj.iAX= ~ Ejne/ijrfN (8.1.11)

j= -N j=-N

where 1= J - I and Ejn is the amplitude of the jth harmonic.
The harmonic associated with j = 0 represents a constant function in space.

The produce kjdX is often represented as a phase angle:

j7/"
<t> = kj' dX=- (8.1.12)

N

and covers the domain (- 7/" , 7/") in steps of 7/"/ N. The region around <t> = 0
corresponds to the low frequencies while the region close to <t> = 7/" is associated
with the high-frequency range of the spectrum. In particular, the value <t> = 7/"

corresponds to the highest frequency resolvable on the mesh, namely the
frequency of the wavelength 2dX. Since we deal with linear schemes the
discretized equation (8.1.7), which is satisfied by the error tin, must also be
satisfied by each individual harmonic.

8.1.1 Amplification factor

Considering a single harmonic Ejn e1iq" its time evolution is determined by the
same numerical scheme as the full solution Uin. Hence inserting a representa-
tion of this form into equation (8.1.3) for the example considered we obtain,
dropping the subscript j,

(En+ 1 - En) e/iq, + -E- (En el(i+ I),p - En el(i-l>tP>] = 0
dt 2dX

or, dividing by e/iq"

(En+l - En) + ~ En(elq, - e-lq,) = 0 (8.1.13)
2

where the parameter

(] = ~ (8.1.14)
dX

has been introduced.
The stability condition (7.2.25) will be satisfied if the amplitude of any error

harmonic En does not grow in time, that is, if the ratio

I En+l l101= ~ ~I forall<t> (8.1.15)

The quantity 0, defined by,

En+l
0=-;;- (8.1.16)E
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is the °'Vplijication factor, and is a function of time step At, frequency and
mesh size Ax. In the present case from equation (8.1.13) we have

G - 1 + ~ . 21 sin cf> = 0
2

or

G = 1 - Iu sin cf> (8.1.17)

The stability condition (8.1.15) requires the modulus of G to be lower or equal
to one. For the present example,

I G 12 = 1 + U2 sin2cf> (8.1.18)

and is clearly never satisfied. Hence the centred scheme (7.2.5), for the
convection equation with forward difference in time is unconditionally
unstable.

Example of scheme (7.2.8): conditional stability

Inserting the single harmonic En eliI/> into scheme (7.2.8) written for the error
we obtain

(En+l - En)elil/> + UEn(elil/> - el(i-l)I/» = 0

or after division by En eliI/>,

G = 1 - u + ue-ll/>
2 (8.1.19)

= 1 - 2u sin cf>/2 - 1 u sin cf>

In order to analyse the stability of scheme (7.2.8), that is, the regions where
the modulus of the amplification factor G is lower than one, a representation
of G in the complex plane is a convenient approach. Writing ~ and 11,
respectively, for the real and imaginary parts of G we have

~ = 1 - 2u sin2cf>/2 = (1 - u) + u cos cf>

. (8.1.20)
11= -usmcf>

which can be considered as parametric equations for G with cf> as a parameter.
We recognize the parametric equations of a circle centred on the real axis ~ at
(1 - u) with radius u.

In the complex plane of G the stability condition (8.1.15) states that the
curve representing G for all values of cf> = k Ax should remain within the unit
circle (see Figure 8.1.2). It is clearly seen from Figure 8.1.2 that the scheme is
stable for

0 < u ~ 1 (8.1.21)

Hence scheme (7.2.8) is conditionally stable and condition (8.1.21) is known as
the Courant-Friedrichs-Lewy or CFL condition. The parameter u is called

~
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Region of
instobility

~G

Figure 8.1.2 Complex G plane representation of upwind
scheme (7.2.8), with unit circle defining the stability region

the Courant number. This condition for stability was introduced for the first
time in 1928 in a paper by Courant et al. (1928), which can be considered as
laying the foundations of the concepts of convergence and stability for finite
difference schemes, although the authors were using finite difference concepts
as a mathematical tool for proving existence theorems of continuous prob-
lems. Observe that the upwind scheme (7.2.8) is unstable for a < 0 (see also

Problem 8.1).

8.1.2 Comment on the CFL condition

This fundamental stability condition of most explicit schemes for wave and
convection equations expresses that the distance covered during the time

Chorocteristic
dx/df=-q

,

n+1

n

i

Figure 8.1.3 Geometrical interpretation of the CFL condi-
tion, (] ~ 1
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interval dt, by the disturbances propagating with speed a, should be lower
than the minimum distance between two mesh points. Referring to Figure
8.1.3, the line PQ is the characteristic dxldt = a, through P, and defines the
domain of dependence of the differential equation in P. On the other hand, the
difference equation defines a numerical domain of dependence of P which is
the domain between PAC.

The CFL stability condition (J ~ 1 expresses that the mesh ratio dtl dX has
to be chosen in such a way that the domain of dependence of the differential
equation should be contained in the domain of dependence of the discretized
equations. In other words, the numerical scheme defining the approximation
Uin+! in (mesh point i) must be able to include all the physical information
which influences the behaviour of the system in this point.

Example of scheme (7.2.6): unconditional stability

The implicit, backward Euler scheme with central space differencing of the
convection equation offers a third situation with respect to stability properties.
Performing the same stability analysis with scheme (7.2.6), the error amplitude
En+! becomes, after introduction of an harmonic of the form En e1iI/J,

elil/J(En+ 1 - En) + ~ En+! (e1I/J - e-II/J)elil/J = 0

or

G - 1 + ~ G(ell/J - e-II/J) = 0
2

leading to
1

G= r. (8.1.22)
1 + ~(J SIn cP

The modulus of G is always lower than one, for all values of (J, since

I 12 * 1G = G. G = 1 2. 2 (8.1.23)
+ (J SIn cP

and therefore the implicit scheme (7.2.6) is unconditionally stable. Hence it is
seen that schemes can have either conditional stability, unconditional stability
or unconditional instability.

The Von Neumann method offers an easy and simple way of assessing the
stability properties of linear schemes with constant coefficients when the
boundary conditions are assumed periodic.

8.2 GENERAL FORMULATION OF VON NEUMANN'S METHOD:
SYSTEM OF EQUATIONS

Referring to the second definition of stability (equation (7.2.35», the Von
Neumann method can be restated on the basis of the development of the
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solution Uin in a Fourier series, that is, writing

N N
Uin = ~ v::' elik",t.x= ~ v::' eli,p (8.2.1)

m=-N m=-N

where v::' is the amplitude of the mth harmonic of Uin. An arbitrary harmonic
can be singled out and, when introduced into the scheme, stability requires
that no harmonic should be allowed to increase in time without bound. Since
Uin and the error tin satisfy the same numerical equation, the results obtained
from equation (8.2.1) are identical to those obtained above. The amplification
factor G is defined here as the ratio of the amplitudes v::', that is, omitting the
m subscript,

n+l '
VG = -n = G(cf>, ~t, ~x) (8.2.2)
v

and definition (7.2.35) leads to the stability condition (8.1.15).
In order to formulate the general Von Neumann stability condition it is

necessary to write the discretized equations in operator and matrix forms.

8.2.1 Matrix and operator formulation

We consider that the numerical scheme is obtained in two steps: a space
discretization, followed by a time integration.

(1) When a space discretization is applied (for instance, a finite difference
method) the differential space operator is aproximated by a discretized space
operator S, leading to the method of line formulation for the discrete values
Uin = U(Xi, n~t), where Xi is the co-ordinate of mesh point i:

duidt = SUi + qi (8.2.3)

The qi term contains eventual sources and the contributions from boundary
conditions. The matrix representation of the above system of ordinary
differential equations in time is written with the vector Un, defined by equation
(7.2.26) as

dUdt = SU + Q (8.2.4)

where we use the same notation for the discretized space operator and its
matrix representation.

(2) When a time-integration scheme is applied to the above space-
discretized equations, corresponding to a two-level scheme connecting time
levels (n + 1) and n, the numerical scheme associated with the differential
problem generalizes equation (7.2.27):

Uin+l=C'Uin+qi (8.2.5)
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or, in matrix form,
Un+1 = CUn + Q (8.2.6)

where C can be considered as a discretization operator of the scheme.
For a two-level implicit scheme, of the form BI un+ 1 = Bo un the difference

operator C is defined by C = Bl1 Bo. Note that for the Euler method we have
C = 1 + ~tS. Some examples of the matrix representation of C have been
given in Chapter 7 and we illustrate these various representations with a few
additional examples.

The linear diffusion equation

au a2uat = a axz (8.2.7)

The one-dimensional linearized shallow- water equations

These equations have been treated in Example 3.4.1 and we write here v for the
x-component of the velocity, keeping the notation U for the column of the two
dependent variables. The equations are linearized by setting v and h equal to Vo
and ho in the non-linear terms:

ah ah av
-+vo-+ho-=Oat ax ax

(8.2.8)
av av ah
-+vo-+g-=O
at ax ax

Here the vector u is defined by

u=I~1 (8.2.9)

and the system is written as

aU aU-ai+Aa-x=O (8.2.10a)

where
A= l vo ho

l (8.2.10b)

g Vo

It is seen that, under this form, equation (8.2.10) generalizes the single
convection equation.

Wave equation

a2w 2 a2w~ af - a axz = 0 (8.2.11a)



292

Table 8.1.

Space discretization Matrix representation of 5
Differential equation operator 5 (excluding boundary conditions)

Heat dilfusion Second order central difference
au a'u dui cx
-=cx, -=,(u/+1-2ui+Ui-l)at ax dt Ax + I -2 I

cx
a' cx 5= ,

L=cx- =-(£-2+£-I)U/ I -2 I Ax
ax' Ax'

I -2 1cx
5=-(£-2+£-1)

Ax'

Shallow waler equation Cenlral scheme
au au du/ U/+I-Ui-1
-+A-=O -=-A
at ax dt 2 Ax

I v
Ih -A Ui-1

u= II 5=_(£-£-1) hi-I
v 2Ax

I v

iA =
I Vo h. I U= Ui = h /

g Vo
I V

!a U/+I
L=-A- hi+1

ax

+A -A
-0 -

5= 2Ax 2Ax
+A -A- 0-

2Ax 2Ax

each el~ment is a (2 x 2) matrix
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Table 8.1. (continued)

Discretization operator C of time
integrated scheme Matrix representation of C Amplification matrix

Euler method
a.1/ 0 G=I+~(e/.-2+e-'.)

13=-;- ~ (1-26) ~ G=I-26(I-cos~)
.1x C= ~ (1-26) ~ G=I-4~sin2~/2

a .11 ~ (I - 26) ~
ur+' = ur+-;-(u1+,-2ur+ u1-1) 0

4X

=[I+~(E-2+E-')]ur

C.I+~(E-2+E-1)

Trape2oidal (Cronck-Nicyolson)
method

.11 41 I '. Iur.'=ur+-sur+-sur.1 A- ~/2 (I-~) ~/2 I ~
( I. 2 -I. )2 2 - ~/2 (I -~) ~/2 + 2 e - + e

( .11 ) ( 41 ) , . G= 1-2 s ur+'= 1+2 S ur+' . . l-i(e/.-2+e-I.)

.11 .11 B= I -~/2(1+~) -~/2
IB=I--S,A=I+-S -~/2 (I+~) -~/2

2 2 . .

C=B-1'A C=B-1A

Euler method
A.1/ A 41". '" ." I. -I-U, =Uj --(u/+,-Uj-l) A.11 A41 G=I~-(e -e )
2.1x - 1 -- 2.1x

A.11 24X 24X G=

C=I--(E-E-1) A41 A41 1)0.11 ho.11
~ 2.1x C= - 1 -- I-l-sin~ -l-sin~

C= 24X 24X .1x .1x

1)0.11 -I ho41 -I A.11 A41 g.1I, Vo41,
I--(E-E ) --(E~E ) - 1 -- -l-sm~ I-l-sm~

2.1x 24X 24X 2.1x 4X .1x

g.111 1)041
---(E-E-1) I--(E-E-')

.1x 2 24X

Lo.-Friedrichs scheme
I ( A4 ) 1 ( A.1I )ur.'=(u7.,+u7-1)/2 1( A 41) 1 ( A.1 ) G=- 1-- e/-+- 1+- e-i.

A.11 - 1+- 0 - 1-- 2.1x 2 .1x

--(U1+I-u7-1) 2 4X 2 4X .11
2.1x C= G=cos~-l-Asin~

C= 1( A4 ) I ( A.1) 4X 1

( A .1
) 1 ( A 4) - 1+- 0 - 1-- G=

- 1-- E+- 1+- E-' 2 4X 2.1x .1 4
2 .1x 2 4X . cos~-~lsin~ -l-.!.hosin~

4X .1x

41 .1/
-l-gsin~ cos~-I)o-lsin~

4X .1x

(continued)
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;; Table 8.1. (continued)

Space discretization Matrix representation of S
Differential equation operator S (excluding boundary conditions)

Wa.e equation Central scheme 0
a'wa'w dui Ui.,-Ui-1 A A
--0'-=0 -=A -- 0-
aI' ax' dl 2 .1x 2 .1x 2 .1x
or A S=
au au S=-(E-E-') A A-=A- 2.1x -- 0 -
al ax 2.1x 2.1x

0
1 0

1U= Forward/backward scheme
W The two components 0, ware discretized

1 0 a 1 separately.
I IA = d A- Ao A.

a 0 ~=~(w/.,-wlJ S= A- Ao A.
a dl .1x A - Ao A.

L=A- da Wi ax -=-(0/-01-1)
dl .1x

1 0 alE-I)
IS= 0(I-E-1) 0 ~

1 00 110-0 1100
1 ~~; S = E- 1 + + E .-

:. -QO a 0 00
i'"

. A-E-I + Ao + A.E

with the initial boundary conditions, for t = 0,

w(x, 0) = f(x)

ow (8.2.]lb)
-ai (x,O) = g(x)

This wave equation is written as a system of first-order equations; for instance,

ou ow
-=0-
ot ox

(8.2. ]2)
ow ou
-=0-
ot ox

Defining

u=I:1 (8.2.]3)

we can write the system as

~ = A ~ (8.2.]4a)
ot ox
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Table 8.1. (continued)

Discretization operator C of time
integrated scheme Matrix representation of C Amplification matrix

-
Backward Euler .

Un+' U.+1 A 111;+1 - 0-1 1 I. I.
ur'=Ur+A A 111 -A 111 0- =I--(e -e- )211x - I - 211x

1 211x 211x A .A 111 C- = ~I
C-1zl--(E-E-1) A 111 -A 111 O-'=l-l-sin,p

211x - I - I1x

211x 211x

Forward Euler scheme-two slep!
semi-implicit

a 111 I I 1-re'."
1Ui'+I~Uin=-(w7+I-W/') C-CoC+ 0= -,.', ,

I1x C - C- Co C+ l-ye 1 --y
a 111 C- Co C+ - 2 . "'

/2,+1 n ( n+1 r+l) -y- asln",
Wi -Wi=- Vi -V-I

I1x

or,witha=al1l/l1x I I -a

ICo=
C= a 1-2a'

I 1 alE-I) I 1 0 0
I(I-E-1)a l+a'(I-E-1)(E-l) C-= -a a'

1 1 -a I 1 0 0 I 1 0 a
IC- + E-1 C -

-al-2a' -a a' +-Oa'

+ I~ :,1 E

with

A=I~ ~I (8.2.14b)

These operators are summarized in Table 8.1 for some representative schemes
and the operators Sand C are expressed as a function of the shift operator E
defined in Chapter 4. Note that the matrix representation of the operators S
and C of Table 8.1 do not contain the boundary points. This will be dealt with
in Chapter 10.

8.2+2 The general Von Neumann stability condition

When a single harmonic is applied to scheme (8.2.5) the operator C will act on
the space index i, since C can be considered as a polynomial in the
displacement operator E, as can be seen from Table 8.1. Hence we obtain,
inserting

Ujn = un eli,p (8.2.15)

into the homogeneous part of scheme (8.2.5),
eli,p + Un+ 1 = C(E) eli,p . un = G«f». Un . eli,p
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and after division by eIiIP,

Vn+1 = G(cf». vn = [G(cf»]nvl (8.2.16)

with

G(cf» = C(eIIP) (8.2.17)

The matrix G(cf» is called the amplification matrix, and reduces to the
previously defined amplification factor when there is only one equation to be
discretized. Observe that G(cf» or G(k) can be considered as the discrete
Fourier symbol of the discretization operator C, and is obtained from C by
replacing Ej by eljlP (see Table 8.1 for several examples).

The stability condition (7.2.35) requires that the matrix [G(cf»] n remains

uniformly bounded for all values of cf>. The bound of a matrix G is defined by
the maximum value of the ratio of the two vector magnitudes

I G. ulII GII = Max I I (8.2.18) U~O u

where 1 u I is any vector norm. For instance, the L2 norm is defined by the
square root of the sum of the components squared
I u IL2 = (I ul12 + ... + I Up 12).1/2 if u is a vector with p components.

Since G is a (p x p) matrix with p eigenvalues AI, ..., Aj, ..., Ap obtained as
solutions of the polynomial

detl G- All =0 (8.2.19)

its spectral radius is defined by the modulus of the largest eigenvalue:

p(G) = Max I Aj I (8.2.20)
j; I,p

We have the following properties (see, for instance, Varga, 1962):

II GII ~ Mjax~=Mjaxl Ajl =p(G) (8.2.21)

where g; are the eigenvectors of G, and

IIGlln~IIGnll~pn(G) (8.2.22)

The Von Neumann necessary condition for stability can be stated as the
condition that the spectral radius of the amplification matrix satisfies
(Richtmyer and Morton, 1967)

p( G) ~ I + O(.:lt) (8.2.23)

for finite ~t and for all values of cf>, in the range (- 11",11"). This condition is less
severe than the previous one (equation (8.1.15», which corresponds to a



297

condition

p( G) ~ 1 (8.2.24)

The possibility for the spectral radius to be slightly higher than one for
stability allows the treatment of problems where the exact solution grows
exponentially (for instance, equation (7.1.5), with a source term q propor-
tional to the temperature, q = bT, b > 0). However, in other cases condition
(8.2.23) allows numerical modes to grow exponentially in time for finite values
of dt. Therefore the practical, or strict, stability condition (8.2.24) is
recommended in order to prevent numerical modes growing faster than
physical modes solution of the differential equation. (We will return to this
important aspect in Chapter 10.) In this connection, when some eigenvalues
are equal to one they would generate a growth of the form dt(In-l), where m is
the multiplicity. Hence eigenvalues >..j = 1 should be simple.

Conditions (8.2.23) or (8.2.24) are also sufficient for stability if G is a
normal matrix, that is, if G commutes with its Hermitian conjugate. In this
case, equation (8.2.22) is valid with an equality sign in the L2-norm, that is,
II G IIL, = p( G) and II G211L, = p2( G). In particular, for a single equation this is
satisfied, and therefore condition (8.2.24) is sufficient and necessary for the
stability of two-level schemes of linear equations with constant coefficients
Other cases for which the above condition is also sufficient for stability can be
found in Richtmyer and Morton (1967).

Properties

(1) If G can be expressed as a polynomial of a matrix A, G = P(A), then the
spectral mapping theorem (Varga, 1962) states that

>"(G) = P(>"(A» (8.2.25)

where >"(A) are the eigenvalues of A. For example, if G is of the form

G = 1 - IaA + (3A2

then

>"(G) = 1-Ia>"(A)+(3>..2(A)

(2) If G can be expressed as a function of several commuting matrices the
above property remains valid. That is, if

G = P(A, B) with AB = BA (8.2.26)

the two matrices have the same set of eigenvectors, and

>"(G) = P(>"(A), >"(B» (8.2.27)

This property ceases to be valid when the matrices do not commute.
Unfortunately this is the case for the system of flow equations in two and three
dimensions. Therefore additional conjectures have to be introduced in order to
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derive stability conditions for schemes applied to the linearized flow equations
in multi-dimensions. More details will be found in Volume 2 when dealing with
the discretization of Euler equations.

Note that this condition of strict stability is called zero stability by Lambert
(1973) when applied to the discretization of initial value problems in systems of
ordinary differential equations (see also Chapter II). f

Example 8.2.1 Shallow-water equations

Referring to Table 8.1 we deduce readily the amplification matrix for the two
schemes considered. The steps can easily be followed and we leave it to the
reader to reproduce this table as an exercise.

Euler method: For the Euler method in time the amplification factor is

1 I voAt '.1. h At I . .I.
- - sm '/' - 0 - sm '/'

Ax Ax
JG = (E8.2.1) )

At I ..1. 1 I voAt . .I.-g- sm,/, - -sm,/,
Ax Ax

The stability condition (8.2.24) requires a knowledge of the eigenvalues of G,
and these are obtained from

[>- - (1 - Iuosin It»] 2 + u2sin21t> = 0 (E8.2,2)

where

Uo = ~ (E8.2.3)
Ax

u = (gho) 1/2 ~ (E8.2.4)
Ax

Hence the two eigenvalues are

>-:t = 1 - I(uo :t u)sin It> (E8.2.5)

and the spectral radius is given by(At)2 p(G) = I >-+ I = 1 + ~ (vo + KiiiJr sin21t> ~ 1 (E8.2.6)

The scheme is therefore unstable, as might be expected from the previous
analysis of the central, Euler scheme for the convection equation.

Lax-Friedrichs scheme: This scheme was introduced by Lax (1954) as a way
of stabilizing the unstable, forward in time, central scheme of the previous
example. It consists of replacing u;n in the right-hand side by the average value
(u7+ I + u7-1 )/2, maintaining the scheme as first order in time and space. It is
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f

n+1

n

n-1

j-1 i i +1

Figure 8.2.1 Lax-Friedrichs scheme for convection equa-
tions

schematically represented in Figure 8.2.1:

u;n+l = i(U7+1 + U7-1) - ~ A(U7+1 - U7-1) (E8.2.7)

The reader can deduce the amplification matrix following the steps of Table

8.1, obtaining

cos <t> - uoI sin <t> - I ~ ho sin <t>

~x
G = (E8.2.8)

- I ~ g sin <t> cos <t> - uoI sin <t>

~x

The eigenvalues A of G are given by

(>" - cas cf> + uoI sin cf»2 + u2sin2cf> = 0

or

A:t = cos <t> - I(uo :t u)sin <t> (E8.2.9)

The spectral radius is given by
p(G) = I A+ 1= [COS2<t> + (uo + U)2 sin2<t>J 1/2 (E8.2.10)

The stability condition p( G) ~ 1 will be satisfied if (for vo > 0)

(uo + u) ~ 1

or

r7::-L:-'\ ~ t
(vo+,,(gho»-~1 (E8.2.11)

~x

This is the CFL condition for the wave speed (vo + J[iii;;j), which is the largest
eigenvalue of A.
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Example 8.2.2 Second-order wave equation (a2wlat2) - a2(a2wlax2) = 0

The forward-backward scheme, with semi-implicit time integration, of Table
8.1 :

n+ 1 n oAt ( n n ) Vj -Vi =~ Wj+l-Wj /'

(E8.2.12)
Wjn+l - Win = ~ (Vjn+l - v7!?)

is equivalent to the three-level, centred scheme for the second-order wave
equation, that is, to the scheme

Wjn+l - 2wjn + Wjn-l = u2(w7+( - 2wjn + W7-1) (E8.2.13)

where u = 0 Atl Ax (see also Problems 8.3 and 8.4). The amplification matrix is
obtained from Table 8.1 as

I 1 I el~ 12
1G= I -1~/2 "( 2 (E8.2.14)

"(e 1-"(

where

"( = 2u sin 1/>/2 (E8.2.15)

The eigenvalues of G are obtained from
(1 - >")(1 - "(2 - >") + "(2 = 0 J

leading to the two solutions

>":t = ~ [(2 - "(2) :t I"(J(4 - "(2)] (E8.2.16)

For "(2 > 4, that is, for I u sin 1/>/21 > 1 or I ul > 1, the spectral radius

p(G) = I >..+ I > 1

and the scheme is unstable. On the other hand, when "(2 ~ 4, that is, for

I ul ~ 1 (E8.2.17)
p( G) = I >..+ I = 1

the scheme is stable, although only marginally, since the norm of G is equal to
one.

For negative values of 02, that is, for negative values of U2, the wave
equation becomes elliptic:

a2w 2 a2wa"f2 + 1 0 I aX2 = 0 (E8.2.18)

and the scheme

(W7++(1 - 2 Win + W7--11) + 1(121 (w7+ I - 2 Win + w7+ 1) = 0 (E8.2.19)
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t

n+1

n

n-1

i-I i i+1

Figure 8.2.2 Unstable resolution scheme for Laplace
equation

is unstable. Indeed, when a2 is negative, the positive eigenvalue A+ becomes

A+ = 1 + 21 uI2sin2ct>/2 + 21 ul sin ct>/2J(1 + 1 uI2sin2ct>/2) ~ 1 (E8.2.20)

This shows that an elliptic problem cannot be treated numerically as an initial
value problem. This is not surprising, since it is known that the Cauchy
or initial value problem is not well posed for an elliptic equation (see, for
instance, Courant and Hilbert, 1962, Volume II).

Observe that the above scheme, with 1 a21 = 1, is the five-point difference
operator for the Laplace equation, in the space (x, f). This scheme, as it
stands, can be solved in a stable way for the associated boundary value
problem, say on a rectangle 0 ~ x ~ L, 0 ~ t ~ T, with any of the methods to
be described in Chapter 12.

What the above results show is that the numerical solution of the elliptic
problem cannot be obtained by a propagation from the points indicated by a
circle in Figure 8.2.2 towards the point (i, n + 1). Such an algorithm is
basically unstable. A resolution method for elliptic equations based on this
marching scheme has nevertheless been developed by Roache (1971) and is
called the error vector propagation method (EVP). This is based on a
computation of the error generated in the marching procedure from t = 0 to
t = T and a comparison with the imposed boundary condition on t = T.
However, this method cannot be stabilized when the number of grid points in
the marching direction increases (McAveney and Leslie, 1972). The reader will
find a recent account of this approach in the monograph edited by Book
(1981), chapter 7 by Madela and McDonald.

8.3 THE SPECTRAL ANALYSIS OF NUMERICAL ERRORS

The amplification matrix G allows, next to an assessment of stability, an
evaluation of the frequency distribution of the discretization errors generated
by the numerical scheme. Definition (8.2.16) of the amplification matrix
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defines the numerical representation of the time evolution of the solution, and
the amplitude vn of the harmonic corresponding to the wavenumber k can be
written as

vn=Oe-/"'/"=Oe-/",.n~/ (8.3.1)

where", = ",(k) is a complex function of the rea1 number k, representing the

numerical dispersion relation. The function O(k) is obtained from the Fourier
decomposition of the initial solution, since for u(x, 0) = f(x) at t = 0 we have,
assuming that the initial solution is represented exactly in the numerical
scheme, with the exception of round-off errors:

O(k) = -21 rL f(x) e-/kx dx (8.3.2)
L J-L

Actually, this defines the harmonic k of the solution Ujn following equation
(8.2.15) as l-'

oJ \'". ~ ~(k\e.(k x -(u ) (Ujn)k = O(k) e-/"'(n~/) e/k(j~x) (8.3.3)

and is a discrete formulation of the single-wave representation applied in. ; equation (3.4.13). In this latter form the exact solution is represented as

v e -! W Ttb~ eI. k(cAx) Ujn = 0 e-/iiJ!/ :/k(j~X) (8.3.4)

As seen in Chapter 3, the exact dispersion relation c;J = c;J(k) can be obtained
from the differential system as a solution of the eigenvalue equation (3.4.20),
while the approximate relation between", and k, obtained from the amplifica-
tion matrix G, is the numerical dispersion relation of the scheme.

From equation (8.2.16) we have

vn = Gn . VO = Gn . 0 = e-/"'n~/ . 0 (8.3.5)

and G can be written as
G = e-/"'~/ (8.3.6) ,

A comparison with the exact amplification function

G=e-/';;~/ (8.3.7)

will allow us to investigate the nature and frequency spectrum of the numerical
errors. Since", is a complex function the amplification matrix can be separated
into an amplitude I G I and a phase «1>. With

",=~+I7J (8.3.8)

we have
G=e+"~/'e-/~~/I I -/41 (8.3.9a)= G e

where
1 G I- ,,~/- e (8.3.9b)

«I> = ~At
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A similar decomposition, performed for the txact solution

<J= ~+ Iii (8.3.10)

following equation (3.4.24), leads to

IGI=eil.11 and <f?=f~t (8.3.11)

The error in amplitude, called the diffusion or dissipation error, is defined
by the ratio of the computed amplitude to the exact amplitude:

101£D = ~ (8.3.12)
e"

The error on the phase of the solution, the dispersion error, can be defined as
the difference

eq,=cI>-<f? (8.3.13)

suitable for pure parabolic problems, where <f? = 0, in the absence of convec-
tive terms. For convection-dominated problems the definition

eq, = cI>/<f? (8.3.14)

is better adapted. In particular, for hyperbolic problems such as the scalar
convection equation (7.2.1) the exact solution is a single wave propagating
with the velocity a. Hence

~ =ka~t (8.3.15)

8.3.1 Error analysis for parabolic problems

Let us consider as an example the error analysis for the explicit central
discretization of the heat diffusion equation (8.2.7). Consider the explicit
scheme, with space-centred differences

n+l n a~t ( n 2 n n ) (8 3 16)Uj = Uj +~ Ui+l- Uj + Uj-l . .
~x

the amplification factor is 9btained from Table 8.1 as

0 = 1 - 4fJ sin2<1>/2 (8.3.17)

with

a~tfJ = ~ (8.3.18)
~x

The stability condition is

11 - 4fJ sin 2<1>/21 ~ 1

which is satisfied for

1 ~ (1 - 4fJ sin2<1>/2) ~ -1

I
!
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i

that is, I

0 ~ {3 ~ 1/2 (8.3.19)

Hence the above scheme is stable for

aAt I
a ~ 0 and (3 = --r ~ _2 (8.3.20) Ax

The first condition expresses the stability of the physical problem, since for
a < 0 the analytical solution is exponentially increasing with time.

The exact solution corresponding to a wavenumber k is obtained by
searching a solution of the type

ii = 0 e-IcJt elkx (8.3.21)

Inserting into equation (8.2.7) we have

<.3(k) = - lak2 = - 1{3 . cf> 21 At (8.3.22)

The exact solution of this parabolic problem is associated with a purely
imaginary eigenvalue <.3, that is, with an exponential decay in time of the initial
amplitude if a > 0:

ii = 0 elkx e-ak2t (8.3.23)

Hence the error in the amplitude is measured by the ratio

= I - 4{3 sin 2cf>/2
(8 3 24)£D A-~.t/>/4~ . .

e

Expanding in powers of cf> we obtain l

1-{3cf>2+{3cf>4/12+... {32cf>4 {3cf>4
£D=I":'{3cf>2+({32cf>4/2)+...~ I-~+U+...

2k 4A 2 k 4
~ I-~+~ AtAx2 (8.3.25)

For the low frequencies (cf> ~ 0) the error in amplitude remains small; while at
high frequencies (cf> ~ 71") the error could become unacceptably high, partic-
ularly for the larger values of {3 ~ 1/2. However, for (3 = 1/6 the two first terms
of the expansion cancel, and the error is minimized, becoming of higher order,
namely of the order 0(At2, AX4) for constant values of (3 = aAtlAx2 andproportional to k6. '

Since G is real there is no error in phase, that is, there is no dispersive error
for this scheme. It is seen that the error is proportional to the fourth and sixth
power of the wavenumber, indicating that the high frequencies are computed
with large errors. However, the amplitudes of these high frequencies are
strongly damped since they are equal to e-ak2t. Therefore this will generally
not greatly affect the overall accuracy, with the exception of situations where
the initial solution u(x,O) contains a large number of high-frequency com-
ponents (see also Problem 8.5). '
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8.3.2 Error analysis for hyperbolic problems

A hyperbolic problem such as the convection equation Ut + aux = 0 represents
a wave travelling at constant speed without damping, that is, with constant
amplitude. The exact solution for a wave of the form u = e-IcJt elkx is given by

u = e-lkat elkx (8.3.26)
I ' Hence the exact amplification function is defined by the real value of (;j:

(;j = ka = ~
ij = 0 (8.3.27)

The error in amplitude will be given by the modulus of the amplification factor

tD = I G I (8.3.28)

and the error in phase (the dispersive error) is defined by

cI> cI>
£(/1=-=- (8.3.29)ka ~t ucj>

An initial sinusoidal wave will be damped in the numerical simulation by a
factor I G I per time step and its propagation speed will be modified by the
dispertion error t.p. When this ratio is larger than one (t.p > 1) the phase error
is a leading error and the numerical computed wave speed, a, is larger than the
exact speed, since

a = cI>!(k~t) = acl>!(ucj» (8.3.30)

and

t.p=a!a (8.3.31)

This means that the computed waves appear to travel faster than the physical
waves. On the other hand, when £(/I < 1 the phase error is said to be a lagging
error, and the computed waves travel at a lower velocity than the physical
ones.

Example 8.3.1 Lax-Friedrichs scheme for the convection equation

Applying the Lax-Friedrichs scheme to the single convection equation (see
Table 8.1) leads to

n+ 1 1( ft n ) U ( n n
) (E8Ui =:2 Ui+l+Ui-l -:2 Ui+l-Ui-l .3.1)

The amplification factor is obtained by inserting a single harmonic un elki.1x:

G = cos cj> - lu sin cj> (E8.3.2)

leading to the CFL stability condition I u I ~ 1.
The accuracy of the scheme is obtained from the modulus and phase of the



~~ ~~I ~~ ,~ ""c, " (
::Plification factor: -

101 = 1 cos21/> + a2sin21/> I 1/2

I (£8.3.3)cI> = tan- (a tan 1/»

This defines the dissipation error

eD = 1 01 = 1 cos21/> + a2sin21/> 11/2 (£8.3.4)

and the dispersion error

e~ = ~ = tan-I (a tan 1/» (£8.3.5)
al/> al/>

As can be seen, the choice a = I gives the exact solution, but lower values of a
will generate amplitude and phase errors.

Two equivalent graphical representations for the amplification factor are
applied in practice. Cartesian representation of I 0 I and e~ as a function of the
parameter I/> = k ~x, ranging from 0 to 'If or a polar representation for I 0 I and

Lax - Friedrich scheme

10

IGI
0.8

0.6

0.4

0.2 CFL=0.25

0.0 0 45 90 135 180 "

:,:~'~~ Phase angle

Lax- Friedrichs scheme
6

~c/I = .

5

4

3

2

1;;
1

0 45 90 135 180
Phase angle

Figure 8.3.1 Amplitude and phase errors for Lax-Friedrichs
scheme applied 10 the convection equation
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£,p, where ~ is represented as the polar angle. Figure 8.3.1 shows the Cartesian
representation of I G I and £.p for the Lax-Friedrichs scheme. For small values
of U the waves are strongly damped, indicating that this scheme is generating a
strong numerical dissipation. The phase error is everywhere larger or equal to
one, showing a leading phase error, particularly for ~ = 11", £.p = Ifu (see also
Problem 8.6).

Example 8.3.2 Explicit upwind scheme (7.2.8)

The amplification factor for this scheme is defined by equation (8.1.19). Its
modulus is given by

I G 1= [(1 - u+ U COS ~)2 + u2sin2~] 1/2 = [1- 4u(1 - u)sin2~f2] 1/2

(E8.3.6)

First order upwind scheme
90

180 0

270
(a) Diffusion error

First order upwind scheme

90

CFL=O.

......
.180 0......

270
( b) Dispersion error

Figure 8.3.2 Polar representation of amplitude and phase
errors for the upwind scheme applied to the convection

equation
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and the phase error is I

£~ = tan-1[(a sin <1»/(1 - a + a cos <1»] (E8.3.7)

a<l>

A polar representation is shown in Figure 8.3.2.
For a = 0.5 the phase error £~ = 1, but for a < 0.5, £~ < 1, indicating a

lagging error, while the numerical speed of propagation becomes larger than
the physical speed, £~ > 1 for Courant numbers a > 0.5 (see also Problem

8.7).

Example 8.3.3 The Lax- Wendroff scheme for the convection equation

The schemes of the two previous examples are of first-order accuracy, which
is generally insufficient for practical purposes. The first second-order scheme
for the convection equation with two time levels is due to Lax and Wendroff
(1960). The original derivation of Lax and Wendroff was based on a Taylor
expansion in time up to the third order such to achieve second-order accuracy.
In the development

u;n+l = u;n + ~t(Ut); + ~ (Utt); + 0(~t3) (E8.3.8)

the second derivative is replaced by

Utt = a2uxx (E8.3.9)

leading to

2~2ur+1 = u;n - a ~t(ux); + E--!- (uxx); + 0(~t3) (E8.3.10)
2

When this is discretized centrally in mesh point i we obtain .
2

U;n+l = U;n -~ (U7+1 - u7-.I) +~ (U7+1 - 2u;n + U7-1) (E.8.3.11)

As can be seen, the third term, which stabilizes the instability generated by the
first two terms, is the discretization of an additional dissipative term of the

form (a2 ~t/2)uxx.
The amplification matrix from the Yon Neumann method is

G = 1 - I a sin <I> - a2(1 - cos <1» (E.8.3.12)

In the complex G-plane this represents an ellipse centred on the real axis at the
abscissa (1 - a2) and having a semi-axis length of a2 along the real axis and a
along the vertical axis. Hence this ellipse will always be contained in the unit
circle if the CFL condition is satisfied (Figure 8.3.3). For a = 1 the ellipse

becomes identical to the unit circle. The stability condition is therefore

lal ~ 1 (E8.3.13)

~
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Figure 8.3.3 Polar representation of the amplification factor for Lax-WendrotT
scheme. (a) (J < 1 and (J2 < 1/2; (b) (J < 1 and (J2 > 1/2
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The dissipation error is given by
II G 12 = 1 - 4u2(1 - u2)sin4ct1/2 (E8.3.14) i

and the phase error by

e~ = tan-1[(u sin ctI)f.(1 - 2u2sin2ct1/2)] (E8.3.15) I
uctl I

To the lowest order we have

e~ ~ 1 - !(1 - U2)ctl2 + 0(ctl4) (E8.3.16)

This relative phase error is mostly lower than one, indicating a dominating
lagging phase error. On the high-frequency end the phase angle cI> goes to zero
if u 2 < 1/2 and tends to 11" if u 2 > 1/2. These diffusion and dispersion errors

are represented in Figure 8.3.4.
The phase error is the largest at the high frequencies, hence this will tend to

accumulate high-frequency errors (for instance, those generated at a moving

Lax-WendrotT scheme
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Lax- WendrotT scheme
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Figure 8.3.4 Dispersion and diffusion errors for Lax-WendrotT scheme
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discontinuity). When the linear equation Ut + aux = 0 is solved for a propaga-
ting discontinuity, oscillations will appear being the shock as can be seen from
Figure 8.3.6 (to be discussed in Section 8.3.4, which compares the results
computed with four different schemes).

8.3.3 Extension to three-level schemes

The properties of the amplification factor in the previous sections were based
on two-level schemes, allowing a straightforward definition of G. However,
many schemes can be defined which involve more than two time levels,
particularly when the time derivatives are discretized with central difference
formulas. A general form, generalizing equations (8.2.6), would be

Un+1 + boUn + blUn-1 = CUn + Q (8.3.32)

For instance, for the convection equation Ut + aux = 0 and a central difference
in space we can define a scheme

U!'+I-U!'-I a, 2At '= - UX (u7+1 - u7-1) (8.3.33)

which is second-order accurate in space and time. This scheme is known as the
leapfrog scheme, because of the particular structure of its computational
molecule (Figure 8.3.5) where the nodal value Uin does not contribute to the
computation of uf + I.

This scheme treats three levels simultaneously and, in order to start the
calculation, two time levels n = 0 and n = I have to be known. In practical

f computations this can be obtained by applying another, two-level, scheme for
the first time step. The method applied for the determination of the ampli-
fication matrix, consists of replacing the multi-level scheme by a two-step

n+1

n

n-1

j-1 i i +1
Figure 8.3.5 Computational molecule for the leapfrog

scheme
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system through the introduction of a new variable Z:

Z-" Z~ Un-I (8.3.34)

Equation (7.3.32) then ~comes

Un+1 = - blZn + (C- bo)Un + Q
Zn+1 = Un (8.3.35)

and by defining a new variable

w= I ~I (8.3.36)

the system is rewritten as

Wn+1 = twn + Q (8.3.37)

and analysed as in the previous cases.
Alternatively, the method of introducing an additional variable is fully

equivalent to a more direct approach, whereby we write for the amplitudes un
of a single harmonic

Un-I = 0-1. un (8.3.38)

and

un+l = O. un (8.3.39)

When this is introduced into the three-level scheme a quadratic equation for 0
is obtained.

Example 8.3.4 The leapfrog scheme for the convection equation

Scheme (8.3.33) will be written with the new variable Z as follows:
j n+1 n ( n n )Ui =Zi-UUi+i-Ui-1

n+1 n (E8.3.17)Zi = Ui

and as a function of the vector W we obtain the system
Win + I = twin (E8.3.18)

With the introduction of the shift operator E the operator t becomes

t= I-U(E;E-I) ~I (E8.3.19)

The amplification matrix becomes

0 = 1- u(elIP1- e-1IP) ~ I (E8.3.20)

The eigenvalues of 0 are readily obtained as

}.,:t = - fu sin <t> ~ j(l - u2sin2<t» (E8.3.21)
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and are to be considered as the amplification factors of the three-level scheme.
Indeed, applying the second approach (8.3.38) and (8.3.39) to equation
(8.3.33), for a harmonic <p = k Ax, leads to

(G - 11 G) = - u(eI.p - e-I.p) (E8.3.22)

with the two solutions

G = -]u sin <p :t J(1 - uIsin 2<p) (E8.3.23)

If u > 1 the scheme is unstable, since the term under the square root can
become negative, and for these values G is purely imaginary and in magnitude
larger than one. This is best seen fQr the particular value <p = 11"12.

For I u I ~ 1 the scheme is neutrally stable, since

I G I = 1 for I u I ~ 1 (E8.3.24)

The phase error is given by

t.p = :ttan -l[U sin <pIJ(1 - ~2sin2<p)] = :t sin -l(U sin <p) (E8.3.25)

u<p u<p

Hence the leapfrog scheme should give accurate results when the function u
has a smooth variation, since the amplitudes are correctly modelled, so much
that for low frequencies the phase error is close to one since t.p = :t 1 for <p -+ o.

.I. However, high-frequency errors tend to remain stationary since t.p -+ 0 for
I

<I> -t 11" and, since they are undamped, they can accumulate and destroy the
accuracy of the numerical solution. This is clearly seen in Figure 8.3.6.

Example 8.3.5 Du Fort and Frankel scheme for the heat-conduction
equation

I The scheme of Du Fort and Frankel (1953) is obtained from the unstable
f 'leapfrog' explicit scheme applied to the diffusion equation (8.2.7) (see

Problem 8.9):

ur+1 - Ujn-l = 2(~) (U7+1 - 2ujn + U7-1) (E8.3.26)

by averaging out the term Ujn in time as (Ujn+ 1 + Ujn-l )/2. This leads to the
., scheme (3 = a Atl Ax2:

n + 1 n - 1 2 a At ( n n + 1 n - 1 n ) (E8 3 27 )Uj - Uj = --y Uj+l - Uj - Uj + Uj-l .. a
Ax

or
ujn+l(1 + 2(3) = ujn-l(1 - 2(3) + 2(3(u7+1 + U7-1) (E8.3.27b)

The amplification matrix is obtained from the system, with Zn = Un-l~
Wjn+ 1 = C. wI' (E8.3.28)
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where

2,8(£+£-') ~
C = 1 + 2,8 1 + 2,8 (E8.3.29)

1 0

Hence

4,8 cos c/> ~
G = 1 + 2,8 1 + 2,8 (E8.3.30)

1 0

and the two eigenvalues, representing the amplification factors of the scheme,
are given by

A.1: =2,8 cos c/> :tlJ112~4,82Sin2c/» (E8.3.31)

A plot of the eigenvalues A.1: for different values of,8 as a function ofc/>, or a
direct calculation of the condition I A.1: I < 1, shows that the scheme of Du
Fort and Frankel is unconditionally stable for ,8 > O. This is very unusual for
an explicit scheme. However, as will be seen in Chapter 10, this scheme is not
always consistent.

Note that, for three-level schemes, there are two amplification factors,
although the exact solution has a single value of the amplification. For the
leapfrog scheme applied to the wave equation it can be observed that one of
the two solutions has a negative phase error, that is, it propagates in the wrong
direction. Hence the solution with the + sign corresponds to the physical
solution, while the other is a spurious solution generated by the scheme. More
insight into this aspect will appear from the stability analysis of Chapter 10
dealing with the matrix method.

I8.3.4 A comparison of different schemes for the linear convection equation

It is instructive to compare the results obtained with the four schemes
described in Examples 8.3.1-8.3.4 when applied to the linear convection,
equation. The effects of the diffusion and dispersion errors can be dem-
onstrated, as a function of frequency, with the following two test cases, a
propagating discontinuity and a sinusoidal wave packet.

The former is typical of a signal with a high-frequency content, since the
Fourier decomposition of a discontinuity contains essentially high-order
harmonics. On the other hand, the sinusoidal wave packet can be chosen to
correspond to a selected value of the wavenumber and hence to a fixed value of
the phase angle c/> for a given mesh size ~x.

Figure 8.3.6 compares the computed results for the propogating dis-
continuity at a Courant number of 0.8 after 50 time steps on a mesh size

,
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(a) First order upwind scheme (b) Lax-Friedrichs scheme

3 CFL=.8 50 time steps 3 CFL=.8 50 time steps

- U exact - U exact
2 . U calculated 2 . U calculated..
1 1

.-
0 0
2.0 2.5 3.0 3.5 4.0 2.0 2.5 3.0 3.5 4.0

x x

(c) Lax- Wendroff scheme (d) Leap-frog scheme

3 CFL=.8 50 time steps 3 CFL=.8 50 time steps

--... - U exact A... - U exact"9 ..2 .. U calculated 2 . U calculated.. .
~.

.
1 1

0 0

2.0 2.5 3.0 3.5 4.0 2.0 2.5 3.0 3.5 4.0

x x

Figure 8.3.6 Comparison of four schemes on the linear convection equation for a propaga-

ting discontinuity

Ax = 0.05. The strong dissipation of the first-order upwind and Lax- Fried-
richs schemes is clearly seen from the way the discontinuity is smoothed out.
Observe also the 'double' solution obtained with the Lax-Friedrichs scheme,
illustrating the odd-even decoupling discussed in Section 4.4 (Figure 4.4.4).
Looking at Figure 8.2.1 it can be seen that ul' + I does not depend on Uin but on

the neighbouring points U 7- t and U 7+ t. These points also influence the
I . n+l n+l h ' l n .11 ' fl . d d I h .so utlons Ui+2, Ui+4, ..., W Ie Ui WI In uence In epen ent y t e pOints

u7:1, U7:3t, ... The solutions obtained at the even- and odd-numbered
points can therefore differ by a small constant without preventing convergence
and such a difference appears on the solution shown in Figure 8.3.6(b).

The second-order Lax - Wendroff and leapfrog schemes generate oscillations
due to the dominating high-frequency dispersion errors, which are mostly
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(a )First order upwind scheme ( b) Lax- Friedrichs scheme
CFL =08 80time steps CFL= 08 80time steps

1 1

-U exact -Uexact. Ucalculated . Ucalculated i

0 0

-1 -1

15 2.5 35 1.5 25 35
x x

(c) Lax- Wendroff scheme ( d ) Leap- frog scheme

CFL=0880timesteps CFL=0880timesteps i

1 1

-Uexact -Uexact
. Ucalculated . U calculated

0 0

-1 -1

15 2.5 3.5 1.5 25 3.5
x x

Figure 8.3.7 Comparison of four schemes on the linear convection equation
for a propagating wave packet for q, = '/f/lO

lagging. The leapfrog scheme, which has no damping, generates stronger
high-frequency oscillations compared with the Lax-Wendroff scheme, whose
amplification factor is lower than one at the phase angle cf> = 11", where
G(1I") = 1 - 2(12.

The test cases of the moving wave packet allow us to experiment with the
freqpency dependence of the schemes at the low end of the spectrum. Figure
8.3.7 compares the four schemes for a phase angle cf> equal to 11"/10 at a
Courant number of 0.8 after 80 time steps on a mesh Ax = 0.025. The strong
diffusion error of the first-order schemes is clearly seen, showing that they are
useless for time-dependent propagation problems of this kind. The second-
order schemes give accurate results at these low frequencies, the oscillations at
the beginning of the wave packet being created by the high-frequency errors
generated by the slope discontinuity of the solution at this point. Hence a
behaviour similar to the propagating discontinuity of the previous figure
appears.

The same computations performed at a higher frequency corresponding to a
phase angle of cf> = 11"/5, are shown in Figure 8.3.8. The first-order schemes are
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(a) First order upwind scheme ( b) Lax-Friedrichs scheme
CFL = 08 80 time steps CFL =08 80time steps

1 1

-Uexact -Uexact
. U calculated . U calculated

0 0

-1 -1
15 25 35 15 25 35

x x

(c )Lax- Wendroff scheme (d) Leap-frog scheme

CFL= 08 80time steps CFL= 08 80timesteps
1 1

-Uexact -Uexact
. U calculated . U calculated

0 0

-1 -1

1.5 25 35 15 25 35
x x

Figure 8.3.8 Comparison of four schemes on the linear convection equation
for a propagating wave packet for <I> = 11"/5

more severely damped while the increasing, lagging dispersion errors of the
two- second-order schemes can be seen by the phase shift of the computed
solutions. The Lax-Wendroff scheme has a diffusion error which increases
with frequency, as can be seen in Figure 8.3.4, and an amplitude error
develops. The leapfrog scheme has a better behaviour with regard to the
amplitude of the wave, as can be seen from the amplitudes of the second and
third periods, although the first period of the wave is spoiled by the high-
frequency oscillations generated at the initial slope discontinuity.

8.3.5 The numerical group velocity

The group velocity of a wave packet, containing more than one frequency, has
been defined in Chapter 3 (equation (3.4.35» and is also the velocity at which
the energy of the wave is travelling. For a one-dimensional wave we have

vo(k) = ~ (8.3.40)
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defining the group velocity as the derivative of the time frequency with respect
to the wavenumber *. For a linear wave it is seen from equation (8.3.27) that
the group velocity is equal to the phase speed o.

By writing the amplification factor as equation (8.3.9) the numerical
dispersion relation", = ",(k) = ~ + 117 can be defined, and the numerical group

velocity

d~ (d"')vG(k) = dk= Re\dk (8.3.41)

will represent the travelling speed of wave packets centred around the
wavenumber k. Since the errors generated by a numerical scheme generally
contain a variety of frequencies it is more likely that they will travel at the
numerical group velocity instead of the numerical phase speed d, defined by
equation (8.3.30).

For the leapfrog scheme (equation (8.3.33» the introduction of equation
(8.3.6) into equation (£8.3.23) leads to the numerical dispersion relation:

sin ",11.1 = u sin <I> (8.3.42)

from which we derive

cos <I> cos <I>

VG= 0 A= 0 (1 2. 2 ) 1/2 (8.3.43)cos ",~I - U SIn <I>

For low frequencies the group velocity is close to the phase speed 0, but forthe high
frequencies «I> := 1/") the group velocity is close to - 0, indicating that the high
wavenumber packets will travel in the opposite direction to the wave phase
speed o. This can be observed in Figure 8.5.2, where it is seen that the
high-frequency errors, generated upstream of the stationary shock, travel in
the upstream direction.

An instructive example is provided by the exponential wave packet

u(x, 1 = 0) = exp( - ax2)sin 21/"kwx (8.3.44)

1
Ini1ial wave Wave packet at' = 2
packet E fxact position 0

wave packetat' = 2

/
0

box = 1/80

400 time
CFL=0.4 steps

-1
0 1 2 3 4

Figure 8.3.9 Solution of the linear propagation of an exponential wave packet by
the leapfrog scheme, after 400 time steps, for t/> = 'K/4
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shown in Figure 8.3.9 for a phase angle ct> = k~x = 71"/4, corresponding to a
wavelength of >.. = 8~x. The solution of the linear wave equation UI + aux = 0
with the leapfrog scheme is shown in the same figure after 400 time steps for a
Courant number of 0.4 and ~x = 1/80 for a = 1. If the initial solution is
centred at x = 1 the exact solution should be located around x = 3 at time
t = 400~t = 2. However, the numerical solution is seen to have travelled only
to the point x ~ 2.475, which indicates a propagating speed of 0.7375 instead
of the phase speed a = 1. This corresponds exactly to the computed group
velocity from equation (8.3.43), which gives a value of Va = 0.7372 at ct> = 71"/4.

These properties of the group velocity should be kept in mind when
analysing numerical data associated with high-frequency solutions. More
details on the applications of the concept of group velocity to the analysis of
numerical schemes can be found in Vichnevetsky and Bowles (1982), Trefethen
(1982) and Cathers and O'Connor (1985). The last reference presents a
detailed, comparative analysis of the group velocity properties of various finite
element and finite difference schemes applied to the one-dimensional, linear
convection equation. Trefethen (1983, 1984) has derived some important
relations between group velocity and the stability of numerical boundary
conditions of hyperbolic problems. His results can be expressed by the
condition that the numerical boundary treatment should not allow group
velocities at these boundaries to transport energy into the computational
domain. We refer the reader to the original references for more details and
derivations.

8.4 MULTI-DIMENSIONAL VON NEUMANN ANALYSIS

For problems in more than one space dimension the Fourier decomposition at
the basis of the Von Neumann stability analysis can be performed separately in
each space direction through the introduction of a wavenumber vector if.. For
instance, the solution u(x, t) will be represented as a superposition of
harmonics of the form

u(x, t) - (} e-I"'1 eliio x (8.4.1)

where the scalar product if.. x is defined as

if.. x = xxx + XyY + XxZ (8.4.2)

In discretized form, with mesh point indexes i, j, k, we have

(if.. X)i,j,k = i(xx~x) + j(Xy~Y) + k(xz~z) = i. ct>x + j . ct>y + k. ct>z

(8.4.3)
and the three parameters ct>x, ct>y, ct>z range from - 71" to 71" is each of the three
space directions. The further determination of the amplification matrix
remains unchanged from the one-dimensional case.



I
320

8.4.1 Parabolic equations

Let us consider as an example the two-dimensional heat diffusion equation
(7.1.15). The obvious generalization of the one-dimensional explicit central
scheme (8.3.16) for the parabolic equation, written as

au (a2u a2u)at = a axz + a? (8.4.4)

is
[ n 2 n + n n 2 n n

]uij+l-uij=a~t UI+l.j-~~~ UI-l.j+UI.j+l-~~~+UI.j-l (8.4.5)

A discrete Fourier decomposition is defined by
uij = 2:; un e/xxi L\x e/x..j L\y (8.4.6)

xx. x..

where the range of Xx and Xy is defined sepatately for each direction, as in the
one-dimensional case. Inserting a single component into the discretized
scheme, the amplification matrix 0 is still defined, as in the one-dimensional
case, as

Un+l = Gun (8.4.7)

We obtain, from equation (8.4.5), after division by un ei/l/>x ej/I/>,.,

0-1 =fJ[(e/l/>x+ e-/l/>x-2) + (~)2(e/I/>I'+e-/I/>"-2)]

(8.4.8)
0-1 = -4fJ(sin2cf>x/2+ (~)2 sin2cf>y/2)

The strict stability condition becomes

11 - 4fJ( sin2cf>x/2 + (~)2 sin2cf>y/2) I ~ 1 (8.4.9)

which leads to

a> 0 (8.4.10)

and

fJ(1 + (~)) ~~

or
( 1 1 ) 1

a ":;:i:X2 + A7 ~t ~ :2 (8.4.11)

This stability condition is necessary and sufficient and is analogous to
condition (8.3.20) but puts a more severe requirement on the time step. For



321

instance, if ~x = ~y the time step is reduced by a factor of two, compared
with the one-dimensional case:

~X2
~t ~ - (8.4.12)

4a

8.4.2 The two-dimensional convection equation

Consider the system of p equations

o~+ A iJ-Y + B!!!! = 0 (8.4.13)
ot ox oy

where A and Bare (p x p) constant matrices, with the property AB = BA.
Applying a Lax-Friedrichs scheme to this system leads to

Un+l 1 (U n Un Un Un ) ~t A(U n Un )ij =4 i,j+l+ i+l,j+ i-I,j+ i,j-1 -lli i+I,j- i-I,j

-~ B(U~j+1 - U~j-l) (8.4.14)

With the decomposition (8.4.6) for a single harmonic the amplification matrix
becomes

O=! (cos t/>x+cos t/>y)-~ A [sin t/>x-~ B [sin t/>y (8.4.15)
2 ~x ~Y

The spectral radius p can be obtained from equation (8.2.22) and the fact that
G is a normal matrix. Hence with

1101112 = p(O*O) = p2(0)

p(O*O) = l(cos t/>x + cos t/>y)2 + (ux sin t/>x + Uy sin t/>y)2 (8.4.16)

where

~t ~tUx = - p(A) Uy =- p(B) (8.4.17)
~x ~Y

A necessary condition is obtained by looking at the most unfavourable
situation, namely t/>x and t/>y independent but small. Expanding the sine and
cosine functions up to higher order.

110111,= 1- [G-u;)t/>;+G-u;)t/>;-2uxuyt/>xt/>y] +O(t/>~,t/>j) (8.4.18)

The quadratic form in t/>x, t/>y between parentheses has to be positive for
stability. Thus if the discriminant is negative the quadratic form never goes
through zero avoiding a change of sign. This will occur if

(u;+u;)~! (8.4.19)
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representing the interior of a circle in the (ax, ay) plane of radius J2/2, centred
at the origin. This condition is also shown to be sufficient in Section 8.6. Here
again, this condition is far more severe than the corresponding one-
dimensional case.

As can be seen from these examples, it is much more difficult to obtain the
stability limits for multi-dimensional problems, even for linear equations, and
several non-sufficient stability conditions can be found in the literature.
Actually, even for one-dimensional problems, controversial results from Yon
Neumann analysis have appeared in the literature (see Chapter 10 for a
discussion of a famous example concerning the convection-diffusion

equation).

8.5 STABILITY CONDITIONS FOR NON-LINEAR PROBLEMS

Most of the mathematical models describing the various approximations
to a flow problem contain non-linear terms, or eventually non-constant
coefficients. In these cases the Yon Neumann method for stability analysis
based on the Fourier expansion cannot strictly be applied since we can no
longer isolate single harmonics. Nevertheless, if we introduced a complete
Fourier series into the discretized scheme with non-constant coefficients the
amplification matrix would become a function of all wavenumbers, instead
of a linear superposition of amplification matrices for single harmonics. In
addition, for non-linear problems the amplification matrix would also become
a function of the amplitude of the solutions and not only of their frequency
as in the constant-coefficient, linear case. Hence these contributions could
generate instabilities, even with schemes which are basically linearly stable.

8.5.1 Non-constant coefficients

Consider a linear problem with non-constant coefficients, for instance, the

one-dimensional, parabolic problem

au a ( au)at = ax a(x) ax (8.5.1)

or the hyperbolic problem

au auat + a(x) ax = 0 (8.5.2)

A two-step numerical scheme applied to these equations will be written as

Uin+ 1 = C(X, E)u;n (8.5.3)

For instance, for an explicit, central scheme the parabolic equation (8.5.1)
becomes

Uin + 1 = Uin + ~ [ai+ 1/2(u7+ 1 - Uin) - ai-l/2(uf' - U7-1)] (8.5.4)

~x
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where

ai+ 1/2 = a(Xi+ 1/2) (8.5.5)

Hence

C(x, E) = 1 + ~ [a(xi+ 1/2)(E - 1) - a(xi-1/2)(I - E- I)] (8.5.6)

~x

The hyperbolic equation (8.5.2) with an explicit, upwind scheme for a> 0 will
be written as

Uin+l=Uin-~a(Xi-1/2)(Uin-u7-1) (8.5.7)
~x

or

C(x,E)= I-~ a(xi+1/2)(I-E-1) (8.5.8)
~x

The amplification matrix is now a function of x and not only of the
wavenumber k. Indeed, introducing a single harmonic (Uin)k = un elik /lX, a
local amplification matrix can be defined by

G(x, k) = C(x, el-P) (8.5.9)

where the variable coefficients are formally retained as functions of x.
In the two examples above we have

G(x, <1» = 1 + ~ [a(x) (e1-P - 1) - a(x)(1 - e-l-P)] (8.5.10)
~x

and for the hyperbolic example

G(x, <1» = 1 - ~ a(x)(1 - e-l-P) (8.5.11)

~x

Under general conditions (see Richtmyer and Morton, 1967) it can be proved
that for linear, non-constant coefficient problems a local Yon Neumann
analysis will provide a necessary condition for stability. That is, freezing the
coefficients at their value at a certain point and applying the Yon Neumann
method provides a local stability condition. However, in order to obtain also
sufficient conditions for stability, additional restrictions on the amplification
matrix G have to be introduced. These conditions are connected with the
generation of high-frequency harmonics due to the non-linear behaviour and
to the necessity of damping these frequencies in order to maintain stability.
This is particularly urgent for non-linear hyperbolic problems, since they
describe essentially propagating waves without physical damping. Even with
parabolic problems, where such a physical damping exists an additional
condition on the amplification matrix is required. This is provided by the
concept of dissipative schemes.
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8.5.2 Dissipative schemes (Kreiss, 1964)

A scheme is called dissipative (in the sense of Kreiss) of order 2r, where r is a
positive integer, if there exists a constant 0 > 0 such that for wavenumbers x
with </>j = (XjI1.Xj) ~ 11" for each space component j (j = 1,2,3 in a three-
dimensional space) the eigenvalues A of the amplification matrix satisfy the
condition

I A(X, I1.t, x)1 ~ 1-01 x'l1.xl2r (8.5.12)

for all x and for 0 < ~t < T. This condition ensures that for </> = 11", that is, for

the high frequencies associated with the (2~xj) waves (the shortest waves to be
resolved on the mesh), enough dissipation is provided by the discretization to
avoid their negative impact on the stability.

For parabolic problems we can show, under fairly general conditions
(Richtmyer and Morton, 1967), that if a 0 > 0 exists such that

I O(X,</»1 ~ 1-0</>2 for -11" ~ </> ~ 11" (8.5.13)

the corresponding schemes are stable. In particular, a scheme with an
amplification matrix, such that the spectral radius p( 0) = 1 for </> = 11", is not
dissipative in the sense of Kreiss.

For hyperbolic problems we have the following theorem of Kreiss (1964): If
the matrix A is Hermitian, uniformly bounded and Lipshitz continuous in x,
then if the scheme is dissipative of order 2r and accurate of order (2r - 1), it is

stable.
This is a sufficient condition for stability, but many schemes applied in

practice do not satisfy this condition.

Lax-Friedrichs scheme

From the amplification factor of the Lax scheme (equation (E8.3.2»

O«/» = cos </> - ](1 sin </>

we deduce that 0(11") = 1 for all (1. Hence the Lax scheme is not dissipative in
Kreiss's sense. However, since this scheme damps strongly all frequencies, as
seen earlier, it remains generally stable even for non-linear problems such as
the Euler equations (Di Perna, 1983).

Upwind scheme

According to equation (E8.3.6) the modulus of the amplification factor
becomes, for small values of </>,

101=1-(1(1-(1)</>2+... (8.5.14)

and is dissipative of order 2 for 0 < (1 < 1. Since

10(11")1 = 11-2(11 (8.5.15)
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the upwind scheme is dissipative in the sense of Kreiss. The order of the
scheme being one, the conditions of Kreiss's theorem are satisfied and the
upwind scheme will be stable for functions a(x) such that

0 a(x)~t 1«
~x

for all values of x in the computational domain.

Lax- Wendroff scheme

The dissipation of the scheme is of fourth order, since for small <1>, from
equation (E8.3.13)

2

101=1-~(I-u2)<I>4+0«I>6) (8.5.16)

showing that the Lax- Wendroff scheme is dissipative to the fourth order.
Since 0(11") = 1 - 2U2 the Lax-Wendroff scheme is dissipative in the sense of
Kreiss for non-zero values of u.

8.5.3 Non-linear problems

Very little information is available on the stability of general non-linear
discretized schemes. Within the framework of the Yon Neumann method
it can be said that the stability of the linearized equations, with frozen
coefficients, is necessary for the stability of the non-linear form but that it is
certainly not sufficient. Products of the form u(au/ax) will generate high-
frequency waves which, through a combination of the Fourier modes on a
finite mesh, will reappear as low-frequency waves and could deteriorate the
solutions. Indeed, a discretization of the form

(u~);=u;(~~i~) (8.5.17)

becomes, when the Fourier expansion (8.2.1) is introduced,( a) ( ) fk,; ~x
u~ =2:: 2:: v(k2)efk,;~x V(kl)~(efk,~x-e-fk,~~

ax; k, k, 2~x
(8.5.18)

=~ 2:: 2:: v(k1)v(k2) ef(k,+k,)~x sin kl~x
~x k, k,

The sum (k1 + k2)~X can become larger than the maximum value 11"
associated with the (2~x) wavelength. In this case the corresponding harmonic
will behave as a frequency [211" - (k1 + k2)~X] and will therefore appear as a
low-frequency contribution. This non-linear phenomenon is called aliasing,
and is to be avoided by providing enough disipation in the scheme to damp the
high frequencies.
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For non-linear problems we also observe that the coefficient of a single
harmonic k1 is a function of the amplitude of the signal through the factor
V(k2) in the above development of the non-linear term uUx. Hence for small
amplitudes the non-linear version of a linearly stable scheme could remain
stable, while an unstable behaviour could appear for larger amplitudes of the
solution. In this case the scheme could be generally stabilized by adding
additional dissipation to the scheme without affecting the order of accuracy.

A typical example is the leapfrog scheme, which is neutrally stable, I G I = I
for alii (] I < I. Hence this scheme is not dissipative in the sense of Kreiss, and
when applied to the inviscid Burger's equation Ut + UUx = 0, the computations
become unstable in certain circumstances, as can be seen from Figure 8.5.1.
This figure shows the computed solutions of Burger's equation for a stationary
shock, after 10,20 and 30 time steps at a Courant number of 0.8 and a mesh
size of .1.x = 0.05. The open squares indicate the exact solution. The amplitude
of the errors increases continuously, and the solution is completely destroyed
after 50 time steps. The instability is entirely due to the non-linearity of the
equation, since the same scheme applied to the linear convection equation does
not diverge, although strong oscillations are generated, as shown in Figure
8.3.6(d).

In the present case the high-frequency errors are generated by the fact that
the shock is located on a mesh point. This point has zero velocity and, with an
initial solution passing through this point, a computed shock structure is
enforced with this internal point fixed, creating high-frequency errors at the
two adjacent points. This is clearly seen in Figure 8.5.1, looking at the
evolution of the computed solutions, and also by comparing it with Figure
8.5.2, which displays the results of an identical computation for a stationary
shock located between two mesh points. This computation does not become
unstable, since the shock structure is not constrained by an internal point.
Observe also the propagation of the generated high-frequency errors away
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Figure 8.5.1 Solutions of Burger's equation with the leapfrog scheme, after 10,20 and 30 time
steps, for a stationary shock located on a mesh point
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Figure 8.5.2 Solutions of Burger's equation with the leapfrog scheme, after 10,20 and 30 time
steps, for a stationary shock located between mesh points

from the shock position. They propagate at a velocity equal to the numerical
group velocity of the scheme, associated with the errors with the shortest 2~x

wavelength.
Other sources of non-linear instability have been identified for the leapfrog

scheme applied to Burger's equation and are described as a 'focusing'
mechansim by Briggs et al. (1983). The structure of this mechanism has been
further investigated by Sloan and Mitchell (1986).

This mechanism is not the classical, finite amplitude instability generated by
terms of the form of equation (8.5.18). This instability can be analysed by
considering group of modes which are closed under aliasing, that is, modes
kt, k2, k3, ..., such that

211"(k1 + k2)~X = k3 ~x (8.5.19)

For instance, referring to definition (8.1.10) of the discrete wavenumber kj it is
seen that the modes k1 ~x = 211"/3, k2 ~x = 11" and k3 ~x = 11"/3 satisfy equation

(8.5.19) for all permutations of the three modes.
By investigating solutions which contain a finite number of closed modes,

the non-linear contributions from terms of the form (8.5.18) can lead to
exponentially growing amplitudes, for Courant numbers below one, when the
amplitudes reach a certain critical threshold function of (J. This is the
mechanism which generates the instability of Figure 8.5.1.

The 'focusing' mechanism, described by Briggs et al., is of a different
nature. It corresponds to an amplification and a concentration of the initial
errors at isolated points in the grid. This generates sharp local peaks as a result
of the non-linear interaction between the original stable modes and their
immediate neighbours in wavenumber space, even for initial amplitudes below
the critical threshold for finite amplitude instabilities. Once the critical
amplitude is reached locally it starts growing exponentially. The particular
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character of this focusing property lies in its local aspect, while other
non-linear instabilities are global in that the breakdown, for a continuous
solution, occurs uniformly throughout the grid.

It has to be added that this focusing process can take a long time, several
thousand time steps, depending on the initial error level. Figure 8.5.3, from
Briggs et af. (1983), illustrates this process for an initial solution composed of
three modes (7r/3, 27r/3, and 7r) with amplitudes below critical such that the
computed solution should remain stable. The dashed line indicates the critical
level above which finite amplitude instability develops. The computed results
are shown for a Courant number of 0.9 and i1x = 1/300 after 400, 1000, 2000,
2200, 2400 and 2680 time steps. Until 1000 time steps the solution still retains
its periodic structure; by 2000 time steps the envelope of the initial profile
begins to oscillate, and local amplitudes start to concentrate until the critical
threshold is reached at a single point after 2680 time steps. From this stage
onwards the classical mechanism takes over and the solution diverges rapidly.
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Figure 8.5.3 Solutions of Burger's equation with the leapfrog scheme for a wave solution
with three modes, after 400, 1000,2000,2200,2400 and 2680 time steps. (From Briggs et al.,

1983)
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This mechanism has a strong resemblance to the chaotic behaviour of
solutions of non-linear equations and their multiple bifurcations, which are
also the basis of descriptions of the generation of turbulence. The reader might
refer in this relation to a recent study of McDonough and Bywater (1986) on
the chaotic solutions to Burger's equation.

The above examples indicate the degree of complexity involved in the
analysis of the stability of non-linear equations and the need for methods
which would prevent the development of instabilities for long-term comput-
ations. A frequently applied method consists of adding higher-order terms
which provide additional dissipation in order to damp the non-linear
instabilities without affecting the accuracy. Examples of this approach will be
presented in Volume 2, when dealing with the discretization of the Euler
equations.

8.6 SOME GENERAL METHODS FOR THE DETERMINATION OF
VON NEUMANN STABILITY CONDITIONS

Although simple in principle and in its derivation, the Von Neumann
amplification matrix is often very tedious and complicated to analyse in order
to obtain the practical stability limits on the parameters of the scheme. If it is
straightforward to obtain necessary conditions, it is much more difficult to
derive the sufficient conditions for stability. The variety of imprecise condi-
tions found in the literature for relatively simple problems, such as the
one-dimensional convection-diffusion equation, testify to these difficulties.
The situation is still worse for multi-dimensional problems. For instance, the
correct, necessary and sufficient stability limits for the convection-diffusion
equation in any number of dimensions had been obtained only recently
(Hindmarsh et al., 1984).

Due to the importance of the Von Neumann analysis, we will present a few
methods which allow the derivation of precise, necessary and sufficient
stability conditions for some limited, but still frequently occurring, discretiz-
ations. The first case treats the general two-level, three-point central schemes
in one dimension, while the second will present the stability criteria for
multi-dimensional, centrally discretized convection-diffusion equations, and,
because of its importance, we will reproduce the derivation of Hindmarsh et
al. (1984). The last case is of a more general nature, and applies to any
amplification matrix obtained for an arbitrary system of discretized equation,
allowing the reduction of the polynomial (8.2.19) to simpler forms.

8.6.1 One-dimensional, two-level, three-point schemes

We consider here the general scheme
b n+l b n+l +b n+l n n n3Ui+1 + ZUi IUi-l = a3Ui+1 + aZUi + alUi-1

(8.6.1 )
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where, for consistency, we should have (u; = constant should be a solution)

b3 + bz + b, = a3 + az + a, = 1 (8.6.2)

with an arbitrary normalization at one. After elimination of bz and az, the
Iamplification factor is

0- a3(e1tP - 1) + a,(e-1tP - 1) + 1
- b3(eltP-1)+ b,(e-1tP-1)+ I

(8.6.3)
1 - (a3 + a,)(1 - cos cP) + /(a3 - a,)sin cP

= 1 - (b3 + b,)(1 - cos cP) + /(b3 - b,)sin cP

Hence

1 a IZ = I 00.1 = A ,{Jzz + Az{J + I (8.6.4)
B,{J + Bz{J + 1

where

{J = sin zcP/2

A, = 16a3al BI = 16b3b, (8.6.5)
Az = 4[(a3 - a,)z - (a3 + a,)] Bz = 4[(b3 - b,)z - (b3 + hi)]

Note that the denominator (B,{Jz + Bz{J + I) ~ 0 in the range 0 ~ {J ~ 1, since
(I + BI + Bz) = (1 - 2bz)z is always non-negative. Hence the condition

I a IZ ~ 1 leads to
z(A,-B,){J +(Az-Bz){J~O (8.6.6)

and for all values of 0 ~ {J ~ 1 the necessary and sufficient Von Neumann
stability conditions are

(A z- Bz) ~ 0
(8.6.7)(A, - B, + Az - Bz) ~ 0

Example 8.6.1 Diffusion equation

Considering scheme (8.3.16) we have b3 = bl = 0, a3 = a, = (J. Hence

B, = 0 Bz = 0
z (E8.6.1)

A,=16{J Az=-8{J

and we obtain the necessary and sufficient conditions

B>O
(E8.6.2)

8{J(2{J - 1) ~ 0

leading to the earlier obtained relation

0 < {J ~ 1/2
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8.6.2 Multi-dimensional space-centred, convection-diffusion equation

We consider here a general scalar equation in a space of dimension M of the
form

au - - - --
ai+(a' V)u= V'(aVu) (8.6.8)

where a is a diagonal diffusivity tensor and a central discretization of
second-order accuracy:

M - M 2
1 ( n+ I ) ~ OmUJ ~ OmUJ-;- UJ - UJ + LI am ~ = LI am AT (8.6.9)

ut n=1 uX,n In=1 uXm

where J represents a mesh point index (for instance, in two dimensions J(i, j)
and J(i, j, k) in a three-dimensional Cartesian mesh). The operator 5m is the
central difference acting on the variable Xm, that is

~=- 2! .(Ui,j+l,k-Ui,j-I,k) ifm=j (8.6.10)
uXm uxJ

and the second derivative operator o~ is similarly defined:

O~nUJ 1 ( 2 ) ' f '
(8 6 )-;-T=72 Ui,j+I,k- Uijk+Ui,j-I,k I m=} . .11

uX,n uXj

Defining

Um = am Atl Axm
I 2 (8.6.12){J,ll = am At AxlII

the above scheme becomes
M

uJ+ 1= uJ - 2:; (UIII 5'l1uJ - (J'IIO~,UJ) (8.6.13)
m=1

This discretized equation represents the scheme to be analysed indepen-
dently of the original equation (8.6.8), used as a starting point. Hence the
following results can be applied to a wider range of problems; for instance, the
two-dimensional convection equation, discretized with the Lax-Friedrichs
scheme (8.4,14), can clearly be written in the above form. As will be seen
in Volume 2, many numerical schemes for the inviscid system of Euler
equations can also be written in this way.

With representation (8.4.1), and <P,li = }(III Ax'II' the amplification factor
becomes

M M
0 = 1 - 12:; UIII sin <PilI - 4 2:; {J,ll sin 2<p1I1/2 (8.6,14)

111=1 m=1

The modulus squared is given by

1012= [1-411~1 {Jmsin2<p1I1/2]2+ [II~I Umsin<PIII]2 (8.6.15)
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The extreme conditions are obtained when all cf>,n = 7r, on the one hand, and
when all cf>,n go to zero on the other. In the first case we obtain the condition

(1 - 4 I~I (3,n)2 ~ I (8.6.16)

Hence this leads to

M I
o~ L:; (3'n~- (8.6.17)

m=1 2

In the second case, performing a Taylor expansion around cf>,n = 0, and
neglecting higher-order terms, we obtain

I 012= [1-'n~1 (3,ncf>fn] 2+ ['~I ulncf>m] 2+0(cf>~1)

(8.6.18)
M (M )2

= 1 - 2 I~I (3,ncf>fn + I~I U,ncf>,n + O(cf>~,)

The right-hand side is a quadratic expression in the cf>,n. Following Hindmarsh
et al. (1984), it can be written as follows, introducing the vectors- T - )T d h d. I .
cf>=(cf>I,...,cf>M) ,U=(UI,...,UM an t e lagona matnx
(3 = diag«(3I, ..., (3M), neglecting higher-order terms:

1012= 1- cJ;T(2.B - if (8) ifT)cJ; (8.6.19)

For I 012 to be lower than one, the symmetric matrix (2.B - ifxifT) must be
non-negative definite. In particular, the diagonal elements (2(3,n - uf,,) must be

non-negative, implying uf" < 2(3m. If one of the (3m is zero, then Um (or am) is
also zero and the corresponding mth dimension can be dropped from the
problem. Therefore we can assume all (3m > 0 and the equality sign on the
lower bound of equation (8.6.17) has to be removed.

Defining the diagonal matrix ;y' by ;y' = diag«2(31) 1/2, ..., (2(3M) 1/1, we have

2.B - if (8) ifT= ;y'(/- ;y'-lif (8) ifT;y'-I);y' (8.6.20)

and the matrix

A s/-(;y'-lif) (8) (;y'-lif)Ts/- a (8) aT (8.6.21)

should also be non-negative definite. Considering the associated quadratic
form, for any M-dimensional vector X,

xTAx= xT. x- (aT. X)2 (8.6.22)

the matrix A is non-negative definite if and only if
M 2

aT. a= L:; ~ ~ I (8.6.23)
In= 1 2(3,n
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The Von Neumann stability conditions are therefore
M 1

0 < l:: {3m ~ - (8.6.24a)
m=1 2

and
M 2l:: ~ ~ 2 (8.6.24b)

m= 1 {3m

Assuming all am positive, we can easily prove that these conditions are
sufficient from the Schwartz inequality applied to the sum

[ M ] 2 [ M (I (J I) ] 2

m~1 (J,n sin <t>,n ~ I~I -Ji;:; (J({3m) I sin <t>,n I)

M 2 M
""' (J In ""' {3 . 2~ L.I -. L.I In Sin <t>m

In=1 {3,n In=1

M

< l:: 2{3,n sin 2<t>,n (8.6.25)
In= 1

where the second condition (8.6.24b) has been applied.
If any {3m = 0 the above condition implies that (Jm = 0 and the sum (8.6.25) is

obtained by summing first only over those m for which {3,n > O. Inserting this
relation into the expression of 1 G 12, we obtain

[ M ] 2 M
I G 12 ~ '1 - 4 I~I {3m sin2<t>,n/2 + 8 /~I {3,n sin2<t>,n/2' Cos2<t>m/2

(8.6.26)M [ M ] 2
= 1 - 8 m~1 {3,n sin4<t>,n/2 + 4 I~I {3m sin2<t>,n/2

Applying the first stability condition (8.6.24a) with the Schwarjz inequality on ~t""'"
the last term we obtain

M M M
I G 12 ~ 1 - 8 l:: {3,n sin4<t>,n/2 + 16 l:: {3,n sin4<t>,n/2' l:: {3m

In=1 /n=1 m=1

M M
< 1 - 8 l:: {3,n sin4<t>,n/2 + 8 l:: {3,n sin4<t>,n/2 (8.6.27)

/1-=1 m=1

< 1

This completes the proof that conditions (8.6.24) are necessary and sufficient
for the strict Von Neumann stability of scheme (8.6.13).

Example 8.6.2 The two-dimensional Lax-Friedrichs scheme (8.4.14)

Writing (8.4.14) in the above form we have

- ~t (A) - ~t (8)(JI - - Amax (J2 - - Amax (E8.6.3)
~x ~y
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and

(31 = (32 = 1 (E8.6.4)

leading to condition (8.4.19).

Example 8.6.3 Two-dimensional convection-difJusion equation

Consider the energy equation

aT aT aT (a2T a2~- + U - + v - = a --r + --r (E8.6.5)
at ax ay ax ay

discretized with central differences and an Euler explicit time integration,

T'n+ I T n (11 (T n Tn ) (12 (T n Tn )ij - ij = - "2 i+ I.j - i-l,j -"2 i.j+ 1- i,j-1

+ (31(T;+I,j-2Tij+ T;-I.j)+(32(Ti,j+I-2Tij+ Ti,j-l)

(E8.6.6)

where

u~t v~t(11 = - (12 = -
~x ~y

(E8.6,7)

,81 =~ ,82 =~~x ~y

The necessary and sufficient stability conditions are as follows:

( 1 1 ) 1
(,81 + ,82) = a ~t ~ + ~ ~ - (E8.6.8a)

~x ~y 2

2 2 ~
!!...!. +!!.}.. = ~ (U2 + V2) ~ 2 (E8.6.8b)
,81 ,82 a

Hence the maximum allowable time step is given by

. (1 ~X2 ~y2 2a)~t ~ Mm - 2 2'2 (E8.6.9)
2a ~x + ~y q

where q2 = U2 + V2 is the square of the velocity v(u, v). Observe that the
second condition (E8.6.8b) is independent of the mesh sizes ~x, ~y.

Additional remarks: If all {3", are equal, we have the necessary and sufficient
condition

M 1~ (1fn ~ 2{3 ~ - (,811l = (3) (8.6.28)
,n=1 M

Otherwise for ,8 = Max,n{3,n the above condition is sufficient.
Introducing the mesh Reynolds, or Peclet, numbers R,n = (a,n ~X'n/a'n) the
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stability condition (8.6.24b) can be written as
M

0 < ~ umRm ~ 2 (8.6.29)
m=1

or as
M

~ {3mR~n ~ 2 (8.6.30)
m=1

When all Rm are lower than two (Rm < 2) it is seen that condition (8.6.24a) is
more restrictive. The second condition (8.6.24b) will be the more restrictive
one when all the Rm are larger than two. Otherwise both conditions have to be
satisfied, that is,

~t~Min ( 1 2' ; / ) (8.6.31) 2}:;m(am/~xm) }:;m(am am)

8.6.3 General multi-level, multi-dimensional schemes

In the general case (discussed in Section 8.2) the strict Yon Neumann stability
condition is expressed by requirements on the eigenvalues of the matrix G,
obtained as a solution of det I G - AI I = O. These eigenvalues are the zeros of

the polynomial of degree p, when G is a p x p matrix,

P(A) = det I G - All = 0 (8.6.32)

The stability condition (8.2.24) requires that all the eigenvalues should be
lower than or equal to one, and the eigenvalues Aj = 1 should be single. Hence
this condition has to be satisfied by the zeros of the polynomial P(A). A
polynomial satisfying this condition is called a Yon Neumann polynomial.

The following remarkable theorem, based on the Schur theory of the zeros
of a polynomial, can be found in Miller (1971). Let P(A) be the associated
polynomial of

P(A) = takA k (8.6.33)
k=O

- ~ * k
P(A) = 2... ap-kA (8.6.34)

k=O

where a: is the complex conjugate of ak, and define a reduced polynomial of
degree not higher than (p - 1):

PI (A) =! [P(O)P(A) - P(O)P(A)] (8.6.35)
A

Then the zeros of P(A) satisfy the stability conditions (P(A) is a Yon
Neumann polynomial) if and only if

(1) I P(O) I > I P(O) I and PI (A) is a Yon Neumann polynomial; or
(2) PI (A) = 0 and the zeros of dP/dA = 0 are such that I A I ~ 1.
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Hence applying this theorem reduces the analysis to the investigation of the
properties of a polynomial of a lower degree (at least p - I). Repeating the
application of this theorem to PI or to dP/d).., the degree of the resulting
polynomials is further reduced until a polynomial of degree one, which can be
more easily analysed, is obtained.

Examples of applications of this technique to various schemes for the
convec\ion-oi\\usion equation can ~e \ouno'm c'nan \\~~~), ~nele "f>ome
stability conditions for higher-order schemes are obtained for the first time.

Example 8.6.4 Leapfrog scheme applied to the convection-diffusion
equation

The equation

au au a2u
-+a-=a~ (E8.6.10)at ax ax

is discretized with central differences in space and time, leading to a leapfrog
scheme with the diffusion terms discretized at level (n - I):

n+1 n-1 ( n n ) 2R ( n-1 2 n-1 n-l ) (E8611)Ui -Ui =-UUi+I-Ui-I+/.IUi+I-Ui +Ui-1 ..
The amplification factors or eigenvalues are solutions of the second-order
polynomial (applying the method of Section 8.3.3)

P()") = )..2 + 2)"u/ sin cf> - 1 - 4fj(cos cf> - 1) = 0 (E8.6.12)

We obtain

P()") = 1 - 2)"u/ sin cf> - [1 + 4fj(cos cf> - 1)])..2 (E8.6.13)

The condition I P(O) I > I P(O) I leads to

11-4fj(1-cos cf»1 < 1

or

4fj < 1 (E8.6.14)

which is a necessary condition for stability.
Constructing PI ()..), we obtain, with -y = 1 - 4fj(1 - cos cf»,

PI ()..) = ),,(1 - -y2) + 2u/(1 - -y) sin cf> (E8.6.15)

and the stability condition becomes I A (0) I > I PI (0) I, or

Iu sin cf>1 ~ 1-2fj(1-coscf» (E8.6.16)

Following Chan (1984), this leads to the necessary and sufficient condition, for i

all cf>,

u2+4fj~ I (E8.6.17)

i
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Summary

The Von Neumann stability method, based on a Fourier analysis in the space
domain, has been developed for linear, one- and multi-dimensional problems.
This method is the most widely applied technique and the amplification factor
is easily obtained. Although the stability conditions cannot always be derived
analytically, we could, if necessary, analyse the properties of the amplification
matrix numerically. These properties also contain information on the disper-
sion and diffusion errors of a numerical scheme, allowing the selection of a
scheme as a function of the desired properties. For non-linear problems it has
been shown that a local, linearized stability analysis will lead to necessary
conditions.
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PROBLEMS

Problem 8.1

Derive the succession of operators for the various examples of Table 8.1.

Problem 8.2
Apply a forward space differencing with a forward time difference (Euler method) to
the convective equation u, + aux = O. Analyse the stability with the Von Neumann
method and show that the scheme is unconditionally unstable for a > 0 and condi-
tionally stable for a < O. Derive also the equivalent differential equation and show why
this scheme is unstable when a > O.

Problem 8.3

Show that the forward/backward scheme for the second-order wave equation (E8.2.l2)
is

n+1 2 n n-1
(aat)2( " 2 n " )Wi - Wi + Wi-I = - Wi+l- Wi + Wi-I

ax
referring to Table 8.1. Obtain the explicit form of the operators and matrices S, C and
G.
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Problem 8.4

Consider the same space discretization of the second-order wave equation as in the
previous problem but apply a full Euler scheme (forward in time):

n+l n ( n n )Vi - Vi = (J Wi+ I - Wi

n+l n ( n n )Wi - Wi = (J Vi - Vi-I

Calculate for this scheme the operators and corresponding matrices C and G.

" Problem 8.5

Solve the one-dimensional heat conduction equation Ut = auxx for the following
conditions, with k an integer:

u(x,O)=sink7fx O~x~l
u(O, t) = 0
u(l, t) = 0

applying the explicit central scheme (8.3.16). Compare with the exact solution for
different values of (:1, in particular (:1 = 1/3 and (:1 = 1/6 (which is the optimal value).
Consider initial functions with di[q:ent wavenumbers k, namely k = 1,5,10.

The exact solution is u = e-ak 'X t sin k7fx. Compute with Xi = i~x and i ranging

from 0 to 30. Make plots of the computed solution as a function of X and of the exact
solution. Perform the calculations for five and ten time steps and control the error by
comparing with equation (8.3.25) for ED in the case of (:1 = 1/3. Calculate the
higher-order terms in ED for (:1 = 1/6 by taking more terms in the expansion.

Problem 8.6

Calculate the amplitude and phase errors for the Lax-Friedrichs scheme (E8.3.1) after
ten time steps for an initial wave of the form

u(x,O) = sin k7fx 0 ~ X ~ 1

for k = 1, 10. Consider ~x = 0.02 and a velocity a = 1. Perform the calculations for
u = 0.25 and u = 0.75. Plot the computed and exact solutions for these various cases
and compare and comment on the results.
Hint: The exact solution is Ii = sin 7fk(x - I). The exact numerical solution is

I ii;n = I Gin sin 7fk(Xi - an ~t) where a is the numerical speed of propagation and is
I equal to a e", (eq!;lation (E8.3.5». Show that we can write iiin = I G I"
i sin(7rk(xi-n~t)+n(cI>-cI»).

Problem 8.7

Repeat Problem 8.6 with the upwind scheme (7.2.8).

Problem 8.8

Repeat Problem 8.6 with the leapfrog scheme (8.3.33).

Problem 8.9

Apply the central difference in time (leapfrog scheme) to the heat-conduction equation
with the space differences of second-order accuracy:

a~t
Uin+l- Uin-1 = 2 -z (u7+1-2ul' + u7-1)

~x
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Calculate the amplification matrix and show that the scheme is unconditionally
unstable.

Problem 8.10

Analyse the leapfrog scheme with the upwind space discretization of the convection
equation Ut + aux = O. This is the scheme

n+l n-1 2 ( n n
)Ui -Ui =-qUi-Ui-1

Calculate the amplification matrix and show that the scheme is unstable.

Problem 8.11
Consider the implicit upwind scheme (7.2.9) and analyse its stability. Show that the
scheme is unconditionally stable for a > 0 and unstable for a < O.

Problem 8.12
Write a program to solve the linear convection equation and obtain Figure 8.3.6.

Problem 8.13
Write a program to solve the linear convection equation and obtain Figures 8.3.7 and
8.3.8 for the wave packet problem. Compare with similar calculations at CFL = 0.2

Problem 8.14
A~ply an upwind (backward in space) discretization to the two-dimensional convection

equation
U, + aux + buy = 0

with an explicit Euler time integration. Perform a Yon Neumann stability analysis and
show that we obtain the CFL conditions in both directions.

Problem 8.15

Apply the Dufort-Frankel scheme to the leapfrog convection-diffusion equation
n+1 n-1 ( n n )+2(:1( n n+1 ,,-I n )Ui -Ui = -q Ui+I-Ui-1 Ui+I-Ui -Ui +Ui-1

and show, by application of Section 8.6.3, that the stability condition is Iql < I,
independently of the diffusion related coefficient (:1.
Hint: Write the scheme as

n+ In-I ( n n ) 2(:1( n 2 n + n )Ui -Ui = -q Ui+I-Ui-1 + Ui+l- Ui Ui-1

- 2(:1(Uin+l- 2Uin + Uin-l)

Problem 8.16
Write a program to solve Burger's equation for the stationary shock and obtain the results
of Figures 8.5.1 and 8.5.2.

..
Problem 8.17

Obtain the results of Example 8.3.3 for the Lax-Wendroff scheme.
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Problem 8.18

Obtain the results of Example 8.3.4 for the leapfrog scheme and derive the expansion of
the dispersion error in powers of the phase angle.

Problem 8.19

Obtain the relations of Example 8.3.5.

Problem 8.20

Apply a central time integration (leapfrog) method to the finite element scheme of
Problem 5.14, considering the linear equation f = au. The scheme is

( n+1 n-I )+4( n+1 n-I )+( n+1 n-l ) 6 ( n n ) 0U;-I - U;-I U; - U; U;+I - U;+I + U U;+I- U;-I =
Determine the amplification factor and obtain the stability condition U ~ I/J3.
Determine the dispersion and diffusion errors and obtain the numerical group velocity.
Compare with the leapfrog scheme (8.3.33).
Hint: The amplification factor is

G = - /b :t ~ b = 3u sin <f>

2+cos<f>

Problem 8.21

Apply a generalized trapezium formula in time as defined by Problem 7.5, to the finite
element discretization of Problem 5.14. Obtain the scheme
( n+1 n ) 4( n+1 n) ( n+1 n ) 38 ( n+1 n+l )Ui-l - U;-I + U; - U; + U;+I - U;+I + U U;+I - U;-I

+ 3(1 - 8)u(u7+ 1 - u7-1) = 0
and derive the amplification factor

G = 2 + cos <f> - 3(1 - 8)/u sin 8

2+cos<f>+38/usin<f>
Show that the scheme is unconditionally stable for 8 ~ 1/2.

Show that for 8 = 1/2 (the trapezium formula), there is no dissipation error, and
obtain the numerical dispersion relation as tan(w.1tI2) = 3u sin <f>1 [2(2 + cos <f»].

Problem 8.22

Find the numerical group velocities for the upwind, Lax-Friedrichs and Lax-Wendroff
schemes for the linear convection equation, applying the relation (8.3.41) to the real
part of the numerical dispersion relation. Plot the ratios vola in function of <f> and
observe the deviations from the exact value of I.

i Hint: Obtain

I First order upwind scheme vo = a[(I- u)cos <f> + u]/[(1 + u(cos <f> - 1»2 + U2 sin2 <f>]
, Lax-Friedrichs scheme vo = al(cos2 <f> + u2 sin2 <f»

Lax-Wendroff scheme vo = a[(1 - 2U2 sin2 1P12)cos IP + U2 sin2 IP] I
[(I - 2u2 sin2 1P12)2 + U2 sin2 IP]



Chapter 9

The Method of the Equivalent
Differential Equation for the
Analysis of Stability

The concept of the equivalent or modified, differential equation of a numerical
scheme has been introduced in Chapter 70 in ,relation with the definition of
consistency. The equivalent differential equation is obtained from the discre-
tized equations by introducing Taylor series developments for all function
values Ujm around the local value at node i and time level n, Ujn. Following the
discussion of Chapter 7, the quantities Ujm are considered as exact solutions of
the discretized equations. If the differential problem is written as

auat = Lu (9.1.1)

the equivalent differential equation of the selected scheme, which is satisfied by
the numerical solution, is

auat = Lu + £T (9.1.2)

where £T is the truncation error.
The stability of the scheme can be partly analysed by an investigation of the

properties of the truncation error, as shown initially by Hirt (1968). An
ex\mple has been shown already with equation (7.2.21), where the truncation
error of the explicit central scheme for the convection equation was shown to
correspond to a negative viscosity coefficient and hence could only be unstable.
More detailed investigations relating the structure of the truncation error to
the stability of the scheme have been developed by Warming and Hyett (1974)
and in a very systematic way by Yanenko and Shokin (1969). Extensive
applications of the method of the equival~t differential equation developed
by the Russian authors, called the method of differential approximation, can
be found in Shokin (1983).

Generally, this method will allow us to define necessary conditions for
stability, although sufficient conditions can, in some cases, also be derived, in
particular for hyperbolic equations. A most important application of this
method is the analysis of the nature and properties of the truncation error. In
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particular, the errors generated from non-linear terms can be investigated by
this approach and schemes can be defined in order to minimize the non-linear
error sources (Lerat and Peyret, 1974,1975; Lerat, 1979; Shokin, 1983).

The order of accuracy of the scheme, will be defined according to equation
(7.2.22) by the lowest-order terms of the equivalent differential equation.

9.1 STABILITY ANALYSIS FOR PARABOLIC PROBLEMS

Considering the one-dimensional heat diffusion equation and an explicit
second-order discretization (equation (8.3.16» with the developments

n+l n A ( ) ~t2 ( ) ~t3
Ui =Ui+~tUti+2 Utti+6(Uttt)i+.'. (9.1.3)

n n ~X2 ~X3Ui:tl = Ui :t ~t(Ux)i+2 (Uxx)i:t 2 (Uxxx)i+ ... (9.1.4)

we have the following form for the equivalent differential equation, removing
the index i:

~t a ~x2 (iJ4U) a ~x4 (iJ6U) ~t2 Ut - auxx= -2 U,t+~ -a? +-:sro- a"X6 -6 Uttt + ...

(9.1.5)
Equation (9.1.5) is used to eliminate the time derivatives in the truncation
error terms of the right-hand side. Taking the time derivative of equation
(9.1.5) and inserting into the right-hand side leads to

1 ( 1)(iJ4U) a ~x4 ( (3 1 )(iJ6U)Ut-auxx= --a ~X2 {3-- ~ +- {32__+- - + ...
2 6 iJx 3 4 120 iJx6

(9.1.6)

with

a~t
{3 =~ (9.1.7)

Note that, due to the central discretization, there are only even-order
derivatives in the expansion of the truncation error.

The interpretation to be given to this equation is that the exact solution of
the numerical scheme is a solution of the modified differential equation. Hence
the stability and accuracy of the numerical scheme can be analysed by the
amplification function of a single harmonic of this differential equation.
Actually this corresponds to an investigation of the well-posedness of this
equivalent differential equation.

Consider the differential equation

iJu (iJ2U) (iJ4U) (iJ6U)a"i=a a? +"/1 a? +"/2 aX6 (9.1.8)

- (
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The amplification factor of this equation is the function

G = e-l"'l (9.1.9)

such that the single harmonic k

uk(t)=e-l"'/elkx (9.1.10)

is a solution of the considered equation.
Inserting into the above equation, we obtain

-ICIJ= -ak2+'Ylk4 - 'Y2k6 (9.1.11)

and the corresponding solution is
Uk(t) = e-(akz-7Ik4 + 7zk6) e1kx (9.1.12)

This solution remains bounded for all k if

a - 'Ylk2 + 'Y2k4 ~ 0 (9.1.13)

This will be satisfied if

a~O, 'YI~O, 'Y2~0 (9.1.14)

showing that condition (9.1.13) is satisfied if the coefficients of the even-order
derivatives are of alternate sign.

In particular, the fourth-order derivative in the truncation error, which is
the lowest-order term, must have a negative coefficient for stability. This leads
to

0 ~ {3 ~ i (9.1.15)

which is a sufficient condition. (Remember that the Yon Neumann condition
led to the restriction 0 ~ (3 ~ 1/2.)

It is also important to observe, in the present context, that there are no
odd-order derivatives in the expansion of the space terms, showing that the
central explicit scheme (8.3.16) has no dispersion errors. Indeed, if an
odd-order derivative would have occurred in the right-hand side of equation
(9.1.8) it would generate an imaginary contribution to ICIJ in equation (9.1.11)
and represent a dispersion error. One can conclude, on the basis of this
example, that even-order derivatives in the~ truncation error expansion
represent dissipative errors, while odd-order derivatives are associated with
dispersion or phase errors.

Example 9.1.1 DuFort-Frankel scheme for the diffusion equation

This scheme has been introduced in Example 8.3.5:

ur+1 - u;n-l = 2{3(u7+1 - u;n+l - u;n-l + U7-1) (E9.1.1)

Applying equations (9.1.3) and (9.1.4), the following equivalent differential
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equation, dropping the index i, is obtained:

~t2 ~X2 (a4u) ~x4 (a6u)Ut-auxx= -6 uttt+a12 ~ +a36Q ~

~f a ~t4 ( a4u )-a- Utt-- - + ... (£9.1.2)

~X2 12~x2 at4

If the ratio ~tl ~x is kept constant when ~t and ~x tend towards zero, then
the equivalent differential equation (£9.1.2) reduces to

~ + a
(.!!.-)2 ~ = a ~ (£9.1.3)

at ~x at2 ax2

Under these conditions this equation is not consistent with the original
diffusion equation Ut = auxx. However, the method can be applied for
stationary solutions with an algorithm achieving convergence when un+ 1 -+ un

or when Ut -+ O.
On the other hand, if fJ is held fixed, that is, ~tl ~X2 is kept constant when

~t and ~x tend to zero, then the DuFort-Frankel scheme will be consistent. If
equation (£9.1.2) is again applied to eliminate the time derivatives, we obtain
successively

a4u ~X2 (a6u) ~t2 utt=a2~+a212 ~ -a~uttt+." (£9.1.4)

(a6u) ~t2 (a4u)uttt=a3 ~ -a ~ ~ + ... (£9.1.5)

introduced into equation (£9.1.2) the modified equation for the DuFort-Fran-
kel scheme, for constant ratio ~tl ~X2, becomes

2( 2 1)(a4u) 4( 1 fJ2 4)(a6u)Ut-aU = -a ~x fJ -- - +a~x ---+fJ - +...
xx 12 ax4 360 4 ax6

(£9.1.6)
As shown in the previous chapter, this scheme is unconditionally stable.

The practical applications of the method of the equivalent differential
equation are more important for hyperbolic equations, since the generation of
errors is not to be associated with the presence of physical damping, as is the
caserwith the parabolic equations. Therefore we will, in the rest of this chapter
concentrate on hyperbolic systems.

9.2 STABILITY AND ACCURACY ANALYSIS FOR HYPERBOLIC

PROBLEMS

If we consider a hyperbolic linear, scalar equation Ut + aux = 0, with constant
at the general form of the equivalent differential equation can be written, after
elimination of the time-derivative terms following the procedures of Chapter 7
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and absorbing At in the variable u, as
~ [ (O2IU) (O21+IU ) ]u'+OUx=l~ 021 axu AX2l-1+02l+1 aX"27+T Ax21 (9.2.1)

If the scheme is of order p in space, the first non-zero coefficient is
proportional to AxP, according to definition (7.2.22). Therefore

021 = 021+ 1 = 0 for 2/,21- 1 < p (9.2.2)

The analytical amplification factor of the above equation for an harmonic k
is obtained by inserting a solution of the form e-1",' e1kx. Observe that the
analytical amplification factor of the equivalent equation represents the Von
Neumann amplification factor of the numerical scheme. Hence

G = e-l"'~' (9.2.3)

where
/(JJ= /kO-- AI ~ [02l(_)1cf>2I+ /(_)102l+1cf>2I+1] (9.2.4)

x 1

Here again, the even derivatives lead to a real exponent, that i~, a damping
or dissipation if the associated coefficients are negative, and the uneven
coefficients contribute to the dispersion error. Hence, to the lowest order, a
necessary condition for stability is

(-)' 02, < 0 with 2r = (2/)min (9.2.5)

if 2r is the lowest even derivative of the expansion. For a first-order scheme,
p = 1, the lowest value of 21 is 2, hence r = 1; for second- or third-order
schemes, p = 2 or 3, the lowest value of 21 is equal to 4 and r = 2.

From the definition of the dispersion error (equation (8.3.29» the ampli-
fication over a time step At is written as

G = I G I e-1if? (9.2.6)

and
cI> cf> 21

£,p =-k A = 1- ~(_)I- 021+1 (9.2.7)
0 t 1 0

The diffusion error, on the other hand, is defined by equation (8.3~28):

£0 = I G I = exp [~ 021(-)1 cf>21 ~
] (9.2.8)

1 Ax

Observe that the dispersion error contains only odd-order coefficients, while
the diffusion error is totally defined by the even-order ones.

The order of accuracy of the scheme, as determined by equation (7.2.22), is
given here by the lowest-order term of expansion (9.2.1). In particular, for a
first-order scheme the coefficient 02 will be different from zero, and correspond
to a term 02Uxx. This term is interpreted as a numerical viscosity generated by
the discretization error of the scheme, and has to be positive for stability.
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For second-order schemes, a2 = 0, the first non-zero term in the expansion
of the truncation error is a third-order derivative a3Uxxx, associated with a
dispersion error. Since the phase error can be of either sign no stability
condition can be deduced from the dispersion term. However, the fourth-
order derivative term, a4(a4U/ax4), contributes a dissipation error

eo = ea4q,4(At/AX) (9.2.9)

and the coefficient a4 has to be negative, according to equation (9.2.5).

Example 9.2.1 The leapfrog scheme for the scalar convection equation

The leapfrog scheme
ur+1 = Ujn-l - (1(u7+1 - U7-1) (E9.2.1)

has the following equivalent differential equation:
2 A 4 ~sa~x 2 a~x 2 (I U 6 EUt + aux = - «(1 - I) Uxxx - - (9(1 - 1)«(1 - 1) -;-5 + O(~X )( 9.2.2)

6 120 (IX

The first coefficients of expansion (9.2.1) are a2 = 0, a3 = a «(1 2 - 1)/6, as =

(a/120)(9(12 - 1)«(1 - 1). It can be observed that this scheme is second-order
accurate and has the particularity of having no even-order derivatives in the
truncation error terms. This is a consequence of the fact that the modulus of
the amplification factor, I G I = 1, as seen earlier, and equation (9.2.8) implies
that all even-order coefficients have to be zero.

9.2.1 General Formulation of the equivalent differential equation for

linear hyperbolic problems

The coefficients of the Taylor series development of the truncation error can be
obtained in a general form for linear hyperbolic equations with constant
coefficients. A general two-level explicit scheme for the equation Ut + aux = 0
can be written as

Ujn+l = 2:: bju7+j (9.2.10)
j

where the sum over j involves the mesh points defining the numerical scheme.
The range of j on the x-axis is called 'the support of the scheme'. For instance,
for the upwind scheme (equation (7.2.8» j takes the values - 1,0, + 1:

b-l=(1, bo=(I-(1), bl=O (9.2.11a)

and the scheme is written as
u;n+1 = (1U7-1 + (1 - (1)Ujn (9.2.11b)

For the Lax-Friedrichs scheme we have

b-I=!(I+(1), bo=O, bl=~(I-(1) (9.2.12a)
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and the scheme is written as

u;n+l=l(l+u)u7-I+l(l-u)u7+1 (9.2.12b)

For the Lax-Wendroff scheme we have

u 2 u
b_I=:2(I+u), bo=l-u, bl=-:2(I-u) (9.2.13a)

and the scheme can be written as

u;n+1 = ~ (I + u)u7-1 + (1 - u2)u;n - ~ (I - u)u7+ I (9.2.13b)

The leapfrog scheme cannot be put into this form since it is a three-level
scheme, and the general development to follow will not be valid in this case.
For an implicit scheme we could also write equation (9.2.10), but the sum over
j would cover all the mesh points.

Equation (9.2.10) represents the way the new function values at level n + I is
obtained from the known function values at time level n. The coefficient bj is
the weight of the contribution of point (i + j) to the new value at point i and
time level n + I. This is illustrated in Figure 9.2.1 in general and for the
upwind, Lax-Friedrichs and Lax-Wendroff schemes in Figure 9.2.2.

The bj coefficients are obviously not arbitrary, and have to satisfy a certain
number of consistency conditions, depending on the order of accuracy of the
scheme. If p is the order of the scheme there are clearly (p + I) relations to be
satisfied. A first condition is obtained from the requirement that a constant
should be a solution of the numerical scheme. This leads to the first
consistency condition:

2:; bj = I (9.2.14)
j

In order to obtain the equivalent differential equation for scheme (9.2.10) ,
the Taylor series expansions have to be introduced: ~

n n ~ (j. ~x)m (omu)u;+j= U; + 2:; ,~ (9.2.15)
m= I m. uX

n+1

n

j-Z j-1 i i+1 i
Figure 9.2.1 Weighl coefficients of contributions of function

values at level n to solution at level n + I

...
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n+1

n

i -2 i-1 i i+1 i +2

(a) First-order upwind scheme

n +1

n

i-2 i-I i i+1 i+2

( b) Lax- Friedrichs scheme

f

n+1

0-(1+0-)/2 I-I) \ 0- (0--1 )/2

n 1-'..-';Z1-p~ ~.I; I .
i-2 i-I i i+t i+2

( c) Lax-Wendroff scheme

Figure 9.2.2 Weight coefficients of contributions of function values
at level n to solution at level n + I for (a) first-order upwind scheme,

(b) Lax-Friedrichs scheme and (c) Lax-WendrotT scheme

Also for the time development we have

~1' u;n+t = u;n + ~ ~ (~
a "~~ ) (9.2.16)

I 11/=1 m. t

Inserting thesepevelopments into equati~n (9.2.10) leads to

o~ ~ ~ (~ )_.'o au ~ .Uo ~x)'" (a"'u)~t
at + to; m' at'" - ~ (bJ) ~x) _ax+ 2:: bJ m l -a ",

11/=2. J 11/=2. X

(9.2.17)
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A second consistency condition is obtained from the above equation, since
the coefficient of the first-order space derivative of u has to be equal to
(- a .1t). Hence we obtain

L:: jbj = - u (9.2.18)

j

With this condition development (9.2.17) becomes
1 ~ U' .1x)m (amu) ~ .1t",-1 (a"'u)u,+aux=- L:: bj , _a '" - L:: -, _

a '" (9.2.19)
.1t ",=2 m. x ",=2 m. t

The full equivalent differential equation is obtained by replacing time
derivatives in equation (9.2.19) by space derivatives derived from the equiv-
alent differential equation. Remember that the numerical solution uf is an
exact solution of this equation, which we write, according to equation (9.2.1),
as

~ (al+1u )u, + aux = L:: .1xl. al+1 ~ +I (9.2.20)
I=p X

for a scheme of order p.
The time derivatives in equation (9.2.19) are therefore calculated from

equation (9.2.20) as follows:

a'" u [ a ~ al+ 1 ] '" -a ,n = -a- a + L:: .1xl. al+I
~ +1 u

t x I=p x

a"'u ~

( al+"'u

)=(-a)m- a ",+m(-a)",-1 L:: .1xlal+1 _ a 1+", (~2.21)x I=p x
( 1) ~ al+k+'" m m -

( ) ,n- 2 " ( A ) /+ k U O(A 3p )+ 2 - a LJ ~x al+lak+l a I+k+", + ~x
I,k=p x

Inserting the development (9.2.21), limited here to terms of the order of 3p,
into equation (9.2.19) leads to the equivalent equation:(.1x) ~

[ ] .1x",-1 (a"'u)u,+aux= A t L:: L::(bd"')-(-u)'" , _
a ",~ ",=2 J m. x

~ ( - u)",-1 ~ (al+"'u )1+",-1 - ~ ( - 1)' L:: .1x al+ 1 _a 1+",In=2 m . I=p X

A ~ ( ) ",-2 ~
( a1f'k+'" )-~" -u " .1xl+k+m-la a u +0

( .1x3p+l )2 A LJ ( _ 2)' LJ 1+1 k+1 a-.I+k+"'+ +",~x ",=2 m . I,k=p x

(9.2.22)
The second summation contributes terms of the order of .1xP+ 1 and higher,

while the third summation starts at .1x2p+ I.
By comparing with development (9.2.20) additional consistency conditions

are derived, since all terms with order lower than p should vanish. Therefore
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the coefficients bj of the numerical scheme of order p have to satisfy the
following (p + 1) relations:

~jmbj=(-u)m for m=O,1,...,p (9.2.23)
j

The relations for m = 0 and 1 reproduce conditions (9.2.14) and (9.2.18).
The remaining term in the first summation of equation (9.2.22) therefore

starts at m = p + 1, for a consistent scheme, and by comparing with equation
(9.2.20), we obtain the coefficient of the first non-zero term of the truncation
error:

~x [ ~ b 'p+1 )P+I ] Iap+ 1 = ~ f jJ - (- u (P+Q! (9.2.24)

The second highest term (~xP+ I) is obtained as follows, introducing the
quantity lXp+ 1 defined by

[ ~ b .p:t 1 ( )P+ I] 1. ~t 9 2 2lXP+I=fjJ --a (P+Q!=~ap+I (..5)

~xap+2 = ~ . lXp+2 + uap+ I (9.2.26)

The next term is of order (p + 2) and the third summation will contribute to
the coefficient ap+ 3 if the scheme is of first-order accuracy, since for p = I,
P + 2 = 2p + 1.

Hence for a first-order scheme (p = 1), the coefficient of ~x3(a4u/ax4) is

given by
~x u2 ~t 2ap+3 = A lXp+3 - -2 ap+ 1 + uap+2 - _2 ap+ 1 (9.2.27)
~t ~x

For a second-order scheme (p = 2) the last term does not contribute, hence

a ( U2 )ap+3 =-;;: lXp+3 +UlXp+2+2lXp+I (9.2.28)

Higher-order terms can be obtained by inspection, if necessary.

Example 9.2.2 Upwind scheme for the convection equation u, + aux = 0

The upwind scheme, for a > 0,
Ujn+1 = Ujn - u(Ujn - u7-1) (E9.2.3)

or

n+ 1 "U ( n n ) U ( n 2 " n ) (E9 2 4)Uj =Uj -2 Uj+I-Uj-1 +2 Uj+l- Uj +Uj-1 ..

has been shown to be stable, by a Von Neumann analysis, for 0 < U ~ I. The
equivalent differential equation is obtained from the above relations.
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With b-1 = U, bo = (1 - u), bl = 0 we verify for this first-order scheme,

2:: jbj = - U (p = 1)
j

For 1= 2 and 1= 3 the above relations become

a ~xa2 = - (1 - u) = - a2 (E9.2.5)
2 ~t

a 2 a aa3 = 6" (u - 1) +"2 u(l - u) = + 6" (u - 1)(1 - 2u) (E9.2.6)

corresponding to the values obtained earlier.
The next term, a4 is given by equation (9.2.27):

a 2a4 = 24 (1 - u)(l + 6u - 6u) (E9.2.7)
-

Up to the third-order terms we have

a ~x a ~x2Ut + aux = ~ (1 - u)uxx + --c;- (2u - 1)(1 - u)uxxx

a ~x3 a4u+ ~ (1 - u)(l + 6U2 - 6u) ~ + O(~x4) (E9.2.8)

The scheme is first-order accurate for constant ratios ~xl ~t. The first term
of the truncation error indicates a numerical viscosity equal to

a ~x 1 ~x2
- (1 - u) = - - u(l - u)

2 2 ~t

which has to be positive for stability. Hence we obtain the stability conditions
0 < u ~ l~ identical to the Yon Neumann conditions. Observe that for u = 1
the truncation error is zero, and the scheme has the exact solution u;n+ 1= u7-1.

Example 9.2.3 Lax-Friedrichs scheme for the convection equation
Ut + aux = 0

The scheme

u;n+1 = ~ (u7+1 + u7-1) - ~ (u7+1 - u7-1) (E9.2.9)

which can also be written as a correction to the unstable central scheme

u;n+1 = u;n -~ (u7+1- u7-1) + ~ (u7+1 - 2u;n + u7-1) (E9.2.10)

has the following equivalent differential equation:

~X2 2 a ~x2 2
Ut+aux=- 2 (l-u )Uxx+- 3 (l-u )Uxxx+... (E9.2.11)

~t

..
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The coefficients of expansion (9.2.1) are 02 = 0(1 - (12)/2(1, 03 = 0(1 - (12)/3.
This scheme is first-order accurate for constant ratios .1 x/ .1t.

The numerical viscosity of the scheme is

.1x2 2 0 2 2Vnum = - (1 - (1 ) = -2 .1x(1 - (1 ) (E9. .12)
2.1t (1

and is higher than the viscosity generated by the first-order upwind scheme by
a factor equal to (1 + (1)/(1. For this coefficient to be non-negative the CFL
condition, I (11 ~ 1, has to be satisfied for stability.

For low values of cf> the leading term of the dispersion error is always
positive, since

el/> ~ 1 + ~ (1 - (12) + 0(.1x4) (E9.2.13)

3

indicating a leading phase error. This again confirms the results obtained from
the complete expression of the phase error (equation (E8.3.5», which leads to
t~e above result when developed in a series of powers of cf>.

9.2.2 Error estimations for two-level explicit schemes

From equations (9.2.7) and (9.2.8) we can define the discretization errors as a
function of the coefficients bj. The exact form of the amplification matrix
of the scheme is obtained from the Von Neumann method by analysing
the behaviour of Fourier modes uf = vnelil/>(cf> = k .1x). Hence with
G(cf» = vn+1/vn:

G(cf» = ~ bj eljl/> = ~ bj cos jcf> + I ~ bj sin jcf> (9.2.29)
j j j

The expansion as a function of cf> gives, from equation (9.2.8), the amplitude
of the diffusion error for small values of cf>:

" 1 21 .1t
2eD=I+£..J°21(-}cf> .-+... (9. .30)

1=1 .1x

and the dispersion error (9.2.7) is rewritten here for convenience:

el/> = 1- ~ i-=1 021+1cf>21 (9.2.31)
1=1 0

If the order of accuracy p is odd the first term in the above development
starts at 2/= p + 1, and

eD= 1 + (_)(P+1)/2ap+Icf>P+1 +0(cf>p+3) (9.2.32)

The associated dispersion error is of order (p + 1) and is given by

el/> = 1 - (_)(P+1)/20p+2 cf>P+1/0 + 0(cf>p+3)

= 1-(-)(P+1)/2(~+ap+I)cf>P+1 +0(cf>P+3) (9.2.33)
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A necessary condition for stability is therefore

(- )(p+ 1)/2ap+ 1 < 0 (9.2.34)

For even orders of accuracy the first term in the development of the
amplification factor starts at p = 2/ and this is an odd-derivative term

contributing to the dispersion error. The amplitude error is therefore obtained,
to the lowest order in cP, from the term Op+2: .

ED = 1 - (- y/2(ap+2 + uap+ l)cPP+2 + 0(cPP+4) (9.2.35)

The dispersion error is defined by the term op+ I:

EIP = 1 - (- y/2 ! ap+ lcPP + 0(cPp+2) (9.2.36)
u

The necessary condition for stability is, in this case, for p even, applying
equation (9.2.5):

~t \p/2 \p/2~ (-J Op+2 = (-J (ap+2 + uap+l) > 0 (9.2.37)

An important criterion for stability, when the coefficients are not constant
or when the problem is not linear, is related to the dissipation property in the
sense of Kreiss, as defined in Section 8.5. In particular, this property requires
that the amplification factor be different from one for the high-frequency
waves associated with the 2~x waves, or cP ~ 11". From equation (9.2.29) we
have

0(11") = 2: bj cosj1l" = 2: bj - 2: bj (9.2.38)
j j even j odd

The condition

10(11")1 < 1

is satisfied if

- 1 < (2: bj - 2: bj)< I (9.2.39)
j even j odd

or, taking into account the consistency condition, ~jbj = 1, we obtain (Roe,

1981)

0 < 2: bj < 1 (9.2.40)
j even

The equality signs on these limits are valid for stability but have to be excluded
for the Kreiss dissipative property. For Lax-Friedrichs scheme bo = 0, and
condition (9.2.40) is not satisfied, indicating that this scheme is not dissipative
in the sense of Kreiss. For the upwind scheme bo = 1 - u, and the scheme is
dissipative for 0 < u < 1. For Lax-Wendroff's scheme bo = 1 - u2, and the
scheme is dissipative for 0 < u < 1.
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9.2.3 Stability analysis for two-level explicit schemes

Warming and Hyett (1974) have shown that for a wide range of schemes
necessary as well as sufficient stability conditions can be derived from the
coefficients of the equivalent differential equation. In these cases the method
of the equivalent differential equation can be considered on an equal footing
with the Yon Neumann method with regard to the stability analysis.

From equation (9.2.29) the modulus squared of the amplification factor can
be written as

I G(cP )12 = I }j bje/j'" 12 = [}j bj cos jcP] 2 + [}j bj sin jcP] 2

= }::::}:::: bjbk cos(j - k)cP (9.2.41)
j k

With the trigonometric relations

n
cos ncP = 1 + }:::: (-1)/22/-1 sin2/cP/2 (9.2.42)

1=1

equation (9.2.41) can be written as a polynomial in the variable

z = sin 2cP/2 (9.2.43)

under the form
/11

IG(cP)!2=1+}::::{3lz' (9.2.44)
1=1

The polynomial in z is, at most, of degree m, where m is the total number of
points included in scheme (9.2.10), located at the left and at the right of mesh
point i. That is, m is equal to the total number of points involved at level n,
excluding point i. The coefficients {3, are the sum of products of (two) bj
coefficients.

It is seen from equation (9.2.44) that a term z' can always be factored out
from the sum over m, leading to an expression of the form

1 G(cP )12 = 1 - z'S(z) (9.2.45)

where S(z) is a polynomial of, at most, order $= m - r.
By comparing equation (9.2.45) for z -+ 0, that is, for cp 2 -+ 0, with equation

(9.2.8) it is seen that 2r is equal to the order of the lowest even derivative
appearing in the truncation error and hence is equal to the value defined in
equation (9.2.5). For the same reasons the scheme is also dissipative of order
2" according to equation (8.5.12).

As an example, for all schemes based on three points including point i,
m = 2 and therefore r = 1 or 2 and $ = 1 or O. For first-order schemes r = 1
and for second-order schemes r= 2. In particular, Lax-Wendroff's scheme
corresponds td $ = 0 and the polynomial S(z) reduces to a constant
8(0) = -16blb-1 = 4U2(1 - U2).

L
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The polynomial 8(z) determines the Yon Neumann stability of the scheme,
since the stability condition 1 0«1»1 ~ I will be satisfied for the following
necessary and sufficient conditions: .

8(0) > 0 and 8(z) ~ 0 for 0 < z ~ 1 (9.2.46)
By expanding equation (9.2.45) in powers of <I> 2 and comparing with devel-

opment (9.2.8) we can express the polynomial 8(z) as a function of the
coefficients 02/ of the truncation error and obtain necessary and sufficient
stability conditions on the 02/ coefficients in this way.

The first condition (9.2.46) leads to equation (9.2.5), since the lowest term of
the expansion of equation (9.2.45) is uniquely defined by 8(0), through

10«1»12 = 1- 8(0) sin2'<1>/2 = 1- 8(0)«1>/2)2'+0«1>2'+2) (9.2.47)

By comparison with equation (9.2.8) we obtain

8(0) =02,(-1)'-122'+1 ~t/~x (9.2.48)

and the condition 8(0) > 0 gives equation (9.2.5).
The second condition (9.2.46) might not be easy to achieve for high-order

schemes when 8(z) is a high-order polynomial, but can readily be worked out
if 8(z) is, at most, of degree one. In this case the conditions 8(0) > 0 and
8(1) ~ 0 are both necessary and sufficient for stability. For instance, for r= 1
we obtain (see Problem 9.6)

~t [ 1 ~t 2 ]8(1) = 2 - - 02 - - 02 - 04 ~ 0 (9.2.49)
~x 3 ~x

for stability. An extension of this analysis for two-level implicit schemes can be
found in Warming and Hyett (1974).

9.3 THE GENERATION OF NEW ALGORITHMS WITH A
PRESCRIBED ORDER OF ACCURACY

One of the consequences of the consistency conditions derived in the previous
section is the possibility of generating new families of algorithms having a
given support on the x-axis and a given order of accuracy. The consistency
conditions (9.2.23), for a scheme of order of accuracy p, define (p + 1)
relations for the bj coefficients. If the support of the scheme covers M points
there are M values bj, and (M - P - 1) coefficients bj can be chosen arbitrarily.
If M = P + 1, there is a unique solution and therefore there is always a unique
scheme on a support of M points having the maximum possible order of
accuracy of p = M - 1. This interesting analysis is due to Roe (1981).

When M > p + 1 families of schemes can be generated by adding an
arbitrary multiple of the homogeneous part of the system of equations (9.2.23)
to a particular solution of this system, generating a family of schemes with
(M - P - 1) parameters. For instance, on the three-point support j = - 1,0,1~
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(M = 3) the first-order accurate schemes satisfy the conditions

b-1 + bo + bl = 1
b-1 - bl = U (9.3.1)

Hence we have a one-parameter family of first-order schemes with three-point
support. If, following Roe (1981), the schemes are identified by the set
S(b-l, bo, bl) the Lax-Friedrichs scheme corresponds to SLF«l + u)/2, 0,
(1 - u)/2) and the first order upwind scheme to Su(u, (1 - u), 0). The unstable,
central scheme (7.2.5) can be represented by Sc (u/2, 1, - u/2).

Since the homogeneous solution of system (9.3.1) is given by the set
H(I, -2,1), all schemes of the form

S(b-l, bo, bl) = Sc(u/2, 1, -u/2) + "(H(I, -2,1) (9.3.2)

are valid first-order schemes. For instance, with "( = u/2 we recover the upwind
scheme and with "( = If2 the Lax-Friedrichs scheme. Hence the possible
schemes on the three-point support (i - 1, i, i + 1) with first-order accuracy are
defined by the parameter "(and the bj values b-1 = u/2 + "(, bo = 1 - 2"(,
bl = 'Y - u/2. They can be written as follows:

uf'+ I = Ujn - ~ (u7+ I - u7-1) + "(u7+ I - 2u7 + u7- I) (9.3.3)

where 'Y appears as an artificial viscosity coefficient. The stability condition,
from equations (9.2.24) and (9.2.34), is

(2'Y - u2) ~ 0 (9.3.4)

Various properties can be defined with regard to these schemes, in particular
the important concept of monoticity of a scheme introduced by Godunov
(1959). We will discuss this more in detail with reference to the Euler equations
in Volume 2.

Two explicit schemes of second-order accuracy for the convection equation
u, + aux = 0 have been discussed up to now, the Lax-Wendroff and the
leapfrog schemes. The latter was shown to be neutrally stable and to have
severe limitations due to its three-level nature as well as its lack of dissipation
for strongly varying functions u(x, t) (for instance, with discontinuous
variations). The two other schemes, the upwind and the Lax-Friedrichs
schemes, are only first-o~der accurate, which is often insufficient for practical
purposes. From the above considerations there is only one explicit scheme on
the domain j( - 1,0, 1), with second-order accuracy and two time levels, that is
centrally defined with respect to the mesh point i. This is the Lax-Wendroff
scheme obtained from equation (9.3.1) by adding the third consistency ~
condition (9.123), which reads here for the support j(-I,O, 1): ~'3

l
b-1 + bl = U2 (9.3.5)
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leading to 'Y = u2/2. The Lax-Wendroff scheme can be written as

u;n+ I = ~ (1 + u) u7-1 + (1 - u2) u;n - ~ (1 - u) u7+ I (9.3.6)
2 2 I

or, as a correction to the unstable central scheme,
2

n + I n U ( n n ) U ( n 2 n n ) (9 3 7)U; =u;-:2 U;+I-U;-I +2 U;+I- U;+U;-I ..

As can be seen, the third term, which stabilizes the instability generated by the
first two terms, is the discretization of an additional dissipative term of the
form (a2 ~t2/2) Uxx.

With the above relations the equivalent equation is

U/ + aux = _.!!- ~X2 (1 - U2)uxxx - a ~ u(1 - u2)uxxxx + 0(~x4) (9.3.8)
6 8

showing the second-order accuracy of the scheme.

Second-order upwind scheme

Other second-order schemes can be generated, for instance on the support
j( - 2, - 1,0), generalizing the one-sided scheme (7.2.8). We attempt a scheme

of the form, for a > 0,

U['+I = b-2U;-2 + b-1u;-1 + bou; (9.3.9)

with the conditions

bo+ b-1 + b-2= 1
-2b-2-b-l= -u (9.3.10)

4b-2 + b-1 = u2

There is only one solution, namely,

b-2=~(u-1), b-l=u(2-u), bo=l(1-u)(2-u) (9.3.11)

leading to the second-order accurate upwind scheme of Warming and Beam
(1976):

u;n+1 = ~ (u- 1)u7-2 + u(2 - u)u7-1 + (1 -¥+~) u;n (9.3.12)

This scheme can be rewritten as a correction to the first-order upwind scheme
as

U['+I = ur - a(u;n - u7-1) + lu(u-l)(u;n - 2u7-1 + U7-2) (9.3.13)

The last term appears as a second-order derivative correction taken at the
point (i - 1), and compensates for the numerical viscosity generated by the
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first-order scheme (7.2.8), which is equal to (a/2) dx(1 - a)uxx. The truncation

error is obtained from equations (9.2.24)-(9.2.26), leading to the equivalent
equation:

a 2 a 3 2 (O4U)ut+aux=6dX (l-a)(2-a)uxxx-gdX (I-a) (2-a) a7 +...

(9.3.14)

The stability condition (9.2.5) reduces to the condition

0 ~ a ~ 2 (9.3.15)

This is confirmed by a Yon Neumann analysis and the amplification factor

G = 1 - 2a[1 - (1 - a)cos cf>]sin2cf>/2 - fa sin cf>[1 + 2(1 - a)sin2cf>/2] (9.3.16)

CFL = 05 80time steps
1

'.0 . .,- - Uexact
y . U calculated

-1
1 2 3

(a)

CFL=1.5 80time steps
1

.
0 A . . - U exact. .. . U calcu lated

\' .
x

-1

3 4 5

(b)

Figure 9.3.1 Solution of the linear propagation of a wave packet
for the second-order Beam-Warming upwind scheme. (a) u = 0.5;

(b)u=1.5
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with
1012 = 1 - 4u(1 - u)2(2 - u)sin44>/2 (9.3.17)

At the high-frequency end of the spectrum:

0(11") = 1 - 2u(2 - u) (9.3.18)

and the scheme is dissipative in the sense of Kreiss for 0 < u < 2. The leading
term of the phase error is given by equation (9.2.36) as

£4> ~ 1 + 1 (1 - u)(2 - u)4> 2 + 0(4> 4) (9.3.19)

and shows a predominantly leading phase error (£4> > 1), for 0 < u < 1 and a
lagging phase error (£4> < 1) for 1 < u < 2.

An example of a computation with this scheme for a wave packet is shown
in Figure 9.3.1 for two values of the Courant number, u = 0.5 and u = 1.5. The
first value corresponds to a leading phase error while the second generates a
solution with a lagging phase error (see also Problem 9.8).

Both the Lax-Wendroff and the Warming-Beam schemes are the unique
schemes of second-order accuracy on the supports (i - 1, i, i + 1) and
(i - 2, i-I, i), respectively.

A larger number of schemes can be generated by allowing a support of the
schemes with a number of points larger than (p + 1). For instance, schemes
with support on (i - 2, i-I, i, i + 1) have been generated with second-order
accuracy, namely that of Fromm (1968), which combines the Lax-Wendroff
and Warming-Beam upwind scheme to reduce the dispersion errors, since
these two schemes have phase errors of opposite signs in the range 0 < u < I
(see Problem 9.10). On the four-point support (i - 2, i-I, i, i + 1) we can
derive a unique third-order accurate scheme. This is left as an exercise to the
reader (see Problem 9.12).

9.4 THE EQUIVALENT DIFFERENTIAL EQUATION FOR
NON-LINEAR HYPERBOLIC PROBLEMS

The Taylor expansion which leads to the equivalent differential equation can
still be applied to non-linear problems, allowing an investigation of the
influence of the non-linear terms on the dispersion and dissipation errors of
the scheme. The present approach is one of the sole methods allowing
such a systematic investigation, and has been applied by Lerat and Peyret
(1974,1975) and by Lerat (1979) in order to optimize schemes for the Euler
equations with respect to non-linear error generation. Of particular concern is
the fact that the non-linearities generate additional terms in the truncation
error, which can influence strongly the behaviour of the scheme.

In order to investigate these influences we consider a general non-linear
hyperbolic equation, with a flux function f = f(u), of the form

ut+fx=O (9.4.1)
In the linear case f = au and for Burger's equation f = u2/2.~
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The generalization of the general scheme (9.2.10) to non-linear problems is
written under the conservative form with a numerical flux function as defined
in Section 6.1:

Uin+ 1 = Uin - fx [g(Uin, u7+ I) - g(u7-1' Uin)] (9.4.2)

for a three-point scheme with support (i - 1, i, i + 1).
The numerical flux, written here as g instead of f* in equation (6.1.11), has

to satisfy the consistency relation

g(u, u) = f(tt) (9.4.3)

The Jacobian A = A(u):

iJfA (u) = a-;:;; (9.4.4)

plays an important role, since equation (9.4.1) can also be written as

ut+A(u)ux=O (9.4.5)

In the linear case A = a is constant and for Burger's equation A = u.
In order to find the truncation error of scheme (9.4.2) and define its

equivalent differential equation we have to develop the numerical flux terms in
a Taylor series as a function of the variable U and its derivatives at mesh point
i. Developing the numerical flux function g in a Taylbr series gives

( iJg ) 1( iJ2g) 2 g(Ui, Ui+l) = g(Ui, Ui) + -;-:- ~U + _
2 ~ ~U

UU,+I Ui UU,+I Ui

(9.4.6)
1 ( iJ3g )+ - -r- ~U3 + ..0

6 iJ Ui+ 1 Uj

where
~U = (Ui+1 - Ui) (9.4.7)

We will define

(~ ) = g2(Ui, Ui); (~) = gl(Ui, Ui) (9.4.8)
UU,+ 1 Ui uU, Uj

as the derivatives of g with respect to the second and first arguments,
respectively, taken at the common value Ui. Similarly,

( iJ2g) ( iJ2g ) ( iJ2g)gll = -; gl2 =; g22 = -y- (9.4.9)
iJUiiJUi Uj iJUiiJUi+1 Uj iJUi+1 Uj

Hence introducing the Taylor expansion for Ui+ 1 leads to

( ~X2 ~X3
)g(Ui,Ui+I)=g(Ui,Ui)+ ux~x+uxx2+6uxxx+'" iog2

+! (ui ~X2 + UxUxx ~X3 + "')i ° g22

1 ( 3 3 '-
)+6 Ux ~x +... iog222 (9.4.10)
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or with the consistency condition (9.4.3):

~x2g(Ui, Ui+ I) = J; + ~Xg2Ux + 2 (g2Uxx + g22U;)

+ ~ (g2Uxxx + 3g22UxUxx + g222U;) + O(~X4) (9.4.11)
6

Subtracting a similar development for g(Ui-l, Ui) we obtain

~X2g(Ui, Ui+l) - g(Ui-l, Ui) = ~x(gl + g2)Ux + 2 [Uxx(g2 - gl) + (g22 - gll)U;]

+ ~ [(gl + g2)Uxxx + 3(g22 + gll)UxUxx + (g222 + g'l,)ul] + O(~X4)
6

(9.4.12)
The term in ~x2/2 can be rewritten as (olox)[ (g2 - gl )ux] and that in ~x3/6 as
(010 x) (fxx - 3gI2U;) by application of the derivative chain rule and of
equation (9.4.3), leading to

~X2 ag(Ui, Ui+ I) - g(Ui-l, Ui) = ~x(gl + g2)Ux + 2 a; [(g2 - gl)Ux]

+ ~ ~ [fxx - 3g12U;] + O(~X4) (9.4.13)
6 ax

Inserting this relation into scheme (9.4.2), together with the time series
(9.2.16), leads to

~t2 ~t3 4 ~t
~t Ut +2 Uti +6 Uttt +O(~t )= -~ [g(Ui, Ui+I)~- g(Ui-l, Ui)]

(9.4.14)

where the right-hand side of equation (9.4.14) is replaced by equation (9.4.13).
By comparison, it is seen that a second consistency condition appears, namely

gl + g2 = A (9.4.15)

or

[Og(Ui,Ui+I)+Og(Ui,Ui+I) ] =A(Ui) (9.4.16)
OUi OUi+ 1 /Ii

and we obtain as a first form of the truncation error expansion

~x a ~X2 a 2Ut + fx = - 2 a; [(g2 - gl)Ux] - 6 a; (fxx - 3g12Ux)

~t ~t2 3
- - Utt - - Uttt + O(~x ) (9.4.17)

2 6
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If the truncation error is written to the lowest order p under the form

Ut + Ix = AxP, Q(u) (9.4.18)

where Q(u) is a differential operator on u, reducing to a(iJP+lu/iJxP+I) for a
linear equation, as seen from equation (9.2.20), we can eliminate the time
derivatives as a function of the space derivatives in the above equation. We
have, successively, with Au = (iJA/iJu)

iJUtI = - Ixt + AxP -iJ Q(u) + O(AXP+I)
t

iJ= - (Aut)x + AxP a-i Q(u) + O(AxP+ I)

= (A2ux)x + AxP ~ Q(u) + O(AxP+ I) (9.4.19)

If we limit the non-linear investigations to the first term in the expansion we
also have

Uttt = (A2ux)xt + O(AxP)

Uttt= -(2A2Auu;+A2Ixx)x+0(AxP) (9.4.20)
Uttt = - 3A(AAuu + 2A~)ui - 9A2 Auuxuxx - A3uxxx + O(AxP)

The last term of this sum is the only remaining contribution in a linear case.
Inserting into expansion (9.4.17) we obtain, finally, with r= (At/Ax), the

equivalent differential equation for scheme,(9.4.2):

I' AxiJ 2
Ut+JX=-Tax[(g2-gl+rA )ux]

AX2 iJ 2 2 2 2 2 3-6~[(I-r A )lxx-(3g12+2r A A/I)ux]+O(Ax) (9.4.21)

If the scheme is second-order accurate, the following consistency condition has
to be satisfied, since the expansion must start with the Ax2 term:

gl - g2 = rA 2 (9.4.22)

Observe that equations (9.4.3), (9.4.15) and (9.4.22) are the non-linear
generalizations of the consistency conditions (9.2.23) up to p = 2.

When the scheme is first-order accurate the first term acts as a numerical
viscosity of the form (iJ/iJx)(iiux), with the numerical viscosity coefficient equal
to

ii = (gl - g2 - rA 2) (9.4.23)

and has to be positive for stability. For second-order schemes the term in Ax2
contains non-linear contributions proportional to Uxx, arising from the deriv-
atives of the Jacobian, Au.
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The ~x2 term can also be worked as
2 i

~x 2 2 2 2 I- 6 ([A(1 - T A )uxxx - [(9T A - 3)Au - 6g12]UxUxx

+ [(1 - 3T2 A 2)Auu - 6T2 A; - 3(g112 + gI22)] u;1 (9.4.24)

where gl22 is a third derivative of the numerical flux g, with respect to the first
argument and twice with respect to the second, taken at the common value u,
and similarly for g112. In the linear case the first term is the only remaining one
and is independent of the scheme. Otherwise a non-linear numerical viscosity
term appears proportional to ~x2, equal to

- ~X2 2 2
PNLUxx=T [(3T A -1)Au-2g12]ux. Uxx (9.4.25)

When this coefficient is negative it produces an anti-dissipation effect which
tends to destabilize the scheme if this term becomes dominant. For instance,
when T A = I, which corresponds to a Courant number of one, the first
dispersive error term A (1 - T2 A 2) vanishes, and non-linear oscillations can

appear.
An explicit calculation has been performed by Lerat and Peyret (1975) for

the inviscid Burger's equation for different schemes, particularly for Lax-
Wendroff's scheme. Applied to the general non-linear equation Ut + fx = 0,
Lax - W endroff' s scheme can be written, by applying central differences in
space to equation (E8.3.8) with the time derivative replaced by flux derivatives,
as

n+1 n ( I' ) ~t2 a (A I'Ui = Ui - ~t JX i + 2 ax Jx) (9.4.26)

or

,n+1 n ~t
Ui =Ui -lli(fi+I-/;-I)

~f+ U? [Ai+I/2(/;+1 - /;) - Ai-I/2(/; - /;-1)] (9.4.27)

The numerical flux g(Ui, Ui-l) for this non-linear Lax-Wendroff scheme is 1
equal to r

( ) /;+/;+1 T I' :
gUi,Ui+1 = 2-iAi+I/2(Ji+I-/;) (9.4.28)

with

Ai+I/2= A(~) (9.4.29)

A direct calculation for Burger's equation Ut + (u2f2)x = 0 shows that gl2 = 0 j
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when Ui = Ui+ 1= U and the truncation error becomes, with A = u, Au = 1,
a = 7U,

(U2) ~X2 ~X2Ut + 2 x = - 6 (1 - a2)uxxx + 2 (3a2 - 1)ux' Uxx + ~x2a2u;

(9.4.30)

The non-linear dissipation term is negative for I a I < 1/J3 and is proprtional to
Ux. Hence around a discontinuity where U would jump from 3 to I, say, the
derivative Ux can become very high and negative, generating an anti-
dissipation of non-linear origin for I a I > I/J3. This will reduce the dissipation
present in the linear terms and can generate non-linear oscillations. These,
however, are generally not sufficient to destabilize completely the scheme when
linear dissipation is present, as is the case with the Lax-Wendroff scheme.

Figure 9.4.1 illustrates these properties by comparing the behaviour of the
Lax-Wendroff scheme for a propagating discontinuity solution of the linear
convection and Burger's equations at two values of the Courant number
a = 0.2 and a = 0.8, with ~x = 1/30. For the linear equation stronger oscilla-
tions appear at low values of a since the scheme has less dissipation at high
frequencies for the lower values of the Courant number, as can be seen from
Figure 8?:4~omparing with results from Burger's equation, the anti-
dissipati~erated by the non-linear terms is clearly seen at a = 0.8, where a

Lax - Wendroff scheme-linear convection Lax- Wendroff scheme - Burger's equation
4 CFL=O250timesteps 4 CFL=O250timesteps

-
# --3 -.., -:- Uexact 3 ~ -:- Uexact: \ Luca,cu,ated : : L Ucalculated

0 0
0 1 2 0 1 2

x x

Lax - Wendroff scheme -I i near convection Lax - Wendroff scheme - Burger's equation
4 CFL=O850 time steps 4 CFL=O850timesteps

. -
3 - Uexact 3 - - Uexact

- Ucalculated - Ucalculated
-

2 2

t 1

0 0
15 25 35 1 2 3

x x

Figure 9.4.1 Non-linear properties of the Lax-Wendroff scheme applied to the
inviscid Burger's equation and a propagating discontinuity
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sharper profile is obtained, while at (J = 0.2 this effect is not clearly present,

although the amplitude of the oscillations is increased. Schemes which do not
have linear dissipation properties (such as the leapfrog scheme) are more
sensitive to a destabilization by the non-linear effects, as has been shown by the
example of Figure 8.5.1.

Summary

The equivalent differential equation allows the determination of the truncation
error and of the consistency of a given scheme but becomes of significant I
interest essentially for hyperbolic problems. In the latter a detailed investiga- ,

tion of the structure of the truncation error delivers consistency and stability
conditions in the most general case. A family of two-level, explicit schemes,
with preset support and order of accuracy can be derived on a fairly general
basis and their accuracy and stability properties can be expressed as a function
of the coefficients of the scheme. A unique property of the equivalent
differential equation approach is the possibility of defining the influence of
non-linearities on the stability of schemes. Non-linear contributions to the
truncation error can be derived from the numerical fluxes of a conservative
scheme in a very general way and sources of instabilities can be detected.
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PROBLEMS

Problem 9.1

Derive by a Taylor expansion the equivalent differential equation for the leapfrog
scheme and obtain equation (E9.2.2). Compare with the series development of the
compact expression (E8.3.25) for the phase error [.p.

Problem 9.2

Derive the equivalent differential equation for the upwind and Lax-Friedrichs schemes
following Examples 9.2.2 and 9.2.3. Compare with the power expansions of I G I and
£.p. Obtain the next term a4 for the Lax-Friedrichs scheme.

Problem 9.3

Develop the general relations of Section 9.2 for a three-level scheme of the form

U!'+ 1 - U !,-I + ~ b .U~1 .
, -, £;.J) 1+)

j
by applying equation (9.2.15) at t = (n + I)~t and t = (n - 1)~t to the convective linear
equation u, + aux = O. Obtain the consistency relations on the bj coefficients. Apply to
the leapfrog scheme.

Problem 9.4
Derive the general development of Section 9.2 for explicit schemes of the diffusion
equation u, = auxx of the form

n+1 ~ b /IUi = £;.J jUi+j

j

Derive the consistency conditions.

Problem 9.5
Apply the form (9.2.45) of the modulus squared of the Yon Neumann amplification
factor to the first-order upwind, Lax-Friedrichs and Lax-Wendroff schemes for the
linear convection equation. Determine for each case the polynomial 8(z).

Problem 9.6
Obtain equation (9.2.49), valid for r= I, and show also that for r ~ 2:

8(1) = (- )'-122'-1 ~ [(3 + r)a2,/12 - a2,+2]
~x
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Problem 9.7 i

Obtain the amplification factor (9.3.16) for the second-order upwind scheme of I
Warming and Beam. Generate a polar plot of the amplitude and phase errors.

Problem 9.8
Solve the convective equation u/ + aux = 0 for a sinus wave packet with four cycles on a
mesh with .ix = 1/60 and a = 1. The wave packet is defined by

u(t = 0) = sin 211"kx 0 ~ x ~ 1 and k = 4
= 0 x < 0 and x> 1

Compute the numerical transported wave after 50, 100 and 200 time steps and plot the
Iexact solutions with the numerical solution. Take u = 0.1,0.5,0.9 and apply the

following schemes:
(1) Upwind first order;
(2) Lax-Friedrichs;
(3) Lax-Wendroff and
(4) Second-order upwind.

Hint: The exact solution after n time steps is

un = sin 211"k(x - n.it) n .it < x ~ (n .it + 1)

=0 x~ n .it and x~ n .it + 1

Problem 9.9

Repeat the same problem for a moving discontinuity:

u(t = 0) = 1 x < 0

=0 x>O

after 10, 50 and 100 time steps for u = 0.1, 0.5 and 0.9.

Problem 9.10.

Define a family of schemes on the support (i - 2, i-I, i, i + 1) with second-order
accuracy. Follow the developments of Section 9.3 and write all the schemes as a
particular solution to system (9.2.23) plus a parameter times the homogeneous solution.
Take the Lax-Wendroff scheme SLW as a particular solution b-2 = 0,
b-1 = u(1 + u)/2, bo = (1 - U2), bl = - (1(1- u)/2 and write a scheme as

S(b-2, b-t, bo, hI) = SLW +-yH

where H is the homogeneous solution. Determine the value of -y for the upwind scheme
of Warming and Beam.

Derive Fromm's (1968) scheme by selecting -y=!u(l-u) and show that it can be
obtained as the arithmetic average of the schemes of Lax-Wendroff, SLW, and of the
Warming-Beam second-order upwind scheme, Swo. Analyse this scheme by calculat-
ing and plotting the amplitude and phase errors obtained from a Yon Neumann
analysis and obtain the stability condition. Apply also the relations of Section 9.2 to
obtain the lowest-order terms of the dissipation and dispersion errors and compare with
the two other schemes SLW, Swo. Obtain the equivalent differential equation.
Hint: Show that H= (-1,3, -3, 1). Fromm's scheme corresponds to

SFU u(u - I),! u(5 -: a), 1 (1 - u)(4 + a), ~ u(u - 1»

and is stable for 0 ~ u ~ 1.

I
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Problem 9.11

Solve Problem 9.8 with Fromm's scheme and compare the results. Observe that the
phase error is considerably reduced compared with SLW and SWB.

Problem 9.12

Refer to Problem 9.10 and obtain the unique, third-order accurate scheme on the
support (i - 2, i-I, i, i + I) (Warming et al., 1973). Apply a Yon Neumann analysis
and plot the phase and amplitude errors; obtain the stability limits. Determine the
lowest-order terms of these errors and the equivalent differential equation by applying
the relations of Section 9.3.
Hint: The scheme is defined by

S3[~ (1- 02),~~.:~i~..!J1, !~~2¥-=_~, ~ (1- 0)(2 - 0)]

and is stable for 0 ~ 0 ~ I.

Problem 9.13

Solve Problem 9.8 with the third-order accurate scheme of Problem 9.12.

Problem 9.14

Solve Problem 9.9 with Fromm's scheme (Problem 9.10).

Problem 9.15
'Q

Solve Problem 9.9 with the third-order accurate scheme of Problem 9.12.

Problem 9.16

Derive the relations of Example 9.1.1, in particular equation (E9.1.6).

Problem 9.17

Obtain the truncation error (9.3.8) of the Lax-Wendroff scheme.

Problem 9.18

Obtain the truncation error of the Warming- and Beam scheme as given by equation
(9.3.14).

Problem 9.19

Obtain equations (9.4.20), (9.4.21) and (9.4.24).

Problem 9.20

Obtain by a direct computation the truncation error for Burger's equation discretized
by the Lax-Wendroff scheme, equation (9.4.30).



Chapter 10

The Matrix Method for Stability
Analysis

The methods for stability analysis, described in Chapters 8 and 9, do not take
into account the influence of the numerical representation of the boundary
conditions on the overall stability of the scheme. The Von Neumann method
is based on the assumptions of the existence of a Fourier decomposition of
the solution over the finite computational domain in space. This implies the
presence of periodic boundary conditions or, from another point of view, that
we investigate the stability of the scheme applied at the interior points far
enough from the boundaries. A similar position can be taken with respect to
the equivalent differential equation approach. Obviously, this method does
not provide any information on the influence of boundary conditions.

The matrix method, to be discussed in this chapter, provides, on the other
hand, a means of determining this influence, although in practical situations
it is generally not easy to derive analytically the corresponding stability
conditions.

The denomination of the method comes from its starting point: the matrix
representation of a scheme (equation (8.2.4)) considered as a system of
ordinary differential equations in time. In addition, the analysis behind the
matrix method provides an answer to the fundamental question on the criteria
to be satisfied by a time-integration method, applied to a given space
discretization, in order to lead to a stable scheme.

10.1 PRINCIPLE OF THE MATRIX METHOD-ANALYSIS OF THE
SPACE DISCRETIZATION

The linear initial boundary value differential problem, with constant co-
efficients, over the domain 0 with boundary r

au L ( ) u(x,O)=f(x) for t=O and xEO
0 1-;- t = u (1. .1)

(/ u(x,t)=g(x,t) for t>O and xEr

can be transformed, after discretization of the space differential operator L,
into the ordinary system of differential equations in time:

dU
"di=SU+Q (10.1.2)

370
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where U is the vector of the mesh point values Ui and Q contains non-
homogeneous terms and boundary values. Several examples of the structure of
the S matrix have already been given in Table 8.1, but with exclusion of the
boundary points and for one-dimensional problems. Note that the following
developments are valid for an arbitrary number of space variables, when U is
defined accordingly.

The stability analysis of the space discretization is based on the eigenvalue
structure of the matrix S, since the exact solution of the system of equations
(10.1.2) is directly determined by the eigenvalues and eigenvectors of S. Let
OJ, j = I, ..., N be the N eigenvalues of the (N X N) matrix S solution of the

eigenvalue equation

detIS-{}F~=O (10.1.3)

and vu), the associated eigenvectors, a solution of

S'VU)=OjVU) (no summation on j) (10.1.4)

N is the total number of mesh points and there are as many eigenvalues and
associated eigenvectors as mesh points.

The matrix S is assumed to be of rank N and hence to have N linearly
independent eigenvectors. Each eigenvector VU) consists of a set of mesh point
values v}j), that is,

V(j)
I-I

VU) = vY) (10.1.5)

v(j)1+1

The (N x N) matrix T formed by the N columns VU) diagonalizes the matrix
S, since all equations (10.1.4) for the N eigenvalues can be grouped as

S. T= TO (10.1.6)

where 0 is the diagonal matrix of the eigenvalues:

01
lli

0= . . (10.1.7)
. ON

Hence
0 = T-1ST (10.1.8)

Since the eigenvectors VU) form a complete set of basis vectors in the
considered space of the mesh-point functions we can always write the exact
solution 0 of equation (10.1.2) as a linear combination of the VU) eigen-
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vectors:
N

0 = ~ Dj(t). VU) (10.1.9)
j=l

and similarly for Q, assumed independent of time:
N

Q = ~ Qj' V(j) (10.1.10)
j=l

The time-dependent coefficients Dj(t) are obtained from the differential system
(10.1.2) by inserting equation (10.1.9):

d - -
dt Uj=Oj' Uj+ Qj (no summation on j) (10.1.11)

and the general solution 0 of system (10.1.2) is the sum of the homogeneous
solution (first term) and the particular solution (second term):

D(t) = f. (COj eOjl- ~). VU) (10.1.12)
j= 1 OJ

where COj is related to the coefficients of the expansion of the initial solution
va:

/;-1
va = /; (10.1.13)

/;+1

in series of the basis vectors V(j):
N

va = ~ UOj' V(j) (10.1.14)
j=l

by

COj= UOj+ Qj/Oj (10.1.15)

and solution (10.1.12) can be written as

D(t)=f. [ uOjeOjl+~(eOjl-1) ] ' vj (10.1.16)
j= I OJ

The system of ordinary differential equations (10.1.2) will be well posed, or
stable, if, according to definition (7.2.35), the solutions D(t) remain bounded.
This requires that the real part of the eigenvalues be negative or zero:

Re(Oj) ~ 0 for all j (10.1.17)

In addition, if an eigenvalue OJ is zero it has to be a simple eigenvalue.
This confirms that the solution of the initial boundary value problem
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(10.1.2) is completely determined by the eigenvalues and eigenvectors of the
space discretization matrix S.

All the properties of the space discretization are actually contained in the
eigenvalue spectrum of the associated matrix. The analysis of a matrix, or an
operator, through the eigenvalues and eigenvectors represents a most thorough
investigation of their properties. The complete 'identity' of a matrix is
'X-rayed' through the eigenvalue analysis and its spectrum can be viewed as a
unique form of identification. Therefore, if the space discretization, including
the boundaries, lead to eigenvalues with non-positive real parts the scheme will
be stable at the level of the semi-discretized formulation. A stable time
integration scheme will al ys be possible. When stability condition (10.1.17)
is not satisfied, no time-int gration method will lead to a stable algorithm.

For time-independent periodic non-homogeneous terms, equation
(10.1.16) describes the g neral solution to the semi-discretized problem
(10.1.2) as a superposition f eigenmodes of the matrix operator S. Each mode
j contributes a time beha iour of the form exp(Ojt) to the time-dependent part
of the solution, called e transient solution, obtained from the homogeneous
part of equation (10.1.2). The transient UT is a solution of

~=SUT UT=2:; VOje!!jl, V(j) (10.1.18)
dt j

The second part of the general solution is the modal decomposition of the
particular solution of equation (10.1.2), and is called the steady state solution,
since it is the only one remaining for large values of time when all the
eigenvalues have real negative components. In this case the transient will damp
out in time, and asymptotically we would have from equations (10.1.16) and
(10.1.17)

lim U(t) = - 2:;.Q.[, V(j) = Us (10.1.19)
I-+~ j OJ

which is a solution of the stationary problem

SUs+Q=O (10.1.20)

For stationary problems, solved by a time-dependent formulation, we are
interested in obtaining the steady-state solution in the shortest possible time,
that is, with the lowest possible number of time steps. This will be the case if
the eigenvalues OJ have large negative real parts, since exp( - I Re OJ I t) will
rapidly decrease in time. On the other hand, if (Re OJ) is negative but close to
zero the corresponding mode will decrease very slowly and a large number of
time steps will be necessary to reach the stationary conditions.

Unfortunately, in practical problems the spectrum of OJ is very wide,
including very large and very small magnitudes simultaneously. In this case
when the ratio I Omax I / I Omin I, called the condition number of the matrix, is
very much larger than one, the convergence to the steady state is dominated by
the eigenvalues close to the minimum Omin, and this could lead to very slow
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convergence. One method to accelerate convergence, consists of a precondi-

tioning technique, whereby equation (10.1.20) is multiplied by a matrix M I

such that the preconditioned matrix S = MS has a spectrum of eigenvalues I

with a more favourable condition number and larger negative values of Omin.

This is an important technique for accelerating the convergence of numerical

algorithms to steady-state solutions, and several examples will be discussed in

later chapters.

ISingle-mode analysis

Since the exact solution (10.1.16) is expressed as a contribution from all the,

modes of the initial solution, which have propagated or (and) diffused with the

eigenvalue OJ, and a contribution from the source terms Q; all the properties of

the time-integration schemes, and most essentially their stability properties,

can be analysed separately for each mode with the scalar equation (10.1.11),

writing w for any of the Vj

dw

-=Ow+q (10.1.21)

dt

The space operator S is replaced by an eigenvalue 0 and the 'modal' equation

(10.1.21) will serve as the basic equation for the analysis of the stability of a

time-integration method as a function of the eigenvalues 0 of the space-

discretization operators.

This analysis provides a general technique for the determination of the

time-integration methods which lead to a stable algorithm for a given space

discretization. For instance, it has been seen that a central discretization of the

space derivative of the linear convection equation leads to an unstable scheme

if the time derivative is discretized by an explicit, forward difference; the same

space discretization is stable under a central difference in time as applied in the

leapfrog scheme. The general rules behind these differences will be defined in

the following. ,

10.1.1 Amplification factors and stability criteria

The stability of the semi-discretized equations (10.1.2) is determined by the

time behaviour of the transient, and consequently it is sufficient for this

purpose to investigate the time behaviour of the homogeneous part of

equation (10.1.2). The exact transient solution of the homogeneous semi- ;

discretized equation at time level t = n~t can be written as

iJT(n~t) =}::; OTj(n~t). VU) =}::; UOj e{Jjn~l. VU) (10.1.22)

J j

Hence the amplification factor of the exact solution for an arbitrary mode 0 is

defined as (;(O): I

VT(n~t) = (;(O). VT«n - 1)~t) = (;n(o). VT(O) (10.1.23)~
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where Gn is G to the power n. By comparison with equation (10.1.22) we have

G(O)=eOat (10.1.24)

The stability condition (10.1.17) ensures that the transient will not be amplified
and that the modulus I G I is lower than one.

If a two-level time integration scheme is applied to equation (10.1.2) the
matrix form (8.2.6) is obtained:

Un+1 = GUn + Q (10.1.25)

The error en satisfies the homogeneous equation

en = Cen = CneO (10.1.26)

and, according to the stability condition (7.2.35), the matrix C should be
uniformly bounded for all n, ~t and ~x, in particular for n -+ <XI, ~t -+ 0 with
n ~t fixed. That is, we should have, in a selected norm, for finite T

IICnll<K forO<n~t<T (10.1.27)

with K independent of n, ~t, ~x.
The norm of Cn is often very difficult to analyse, and instead a necessary but

not always sufficient condition can be obtained from a local mode analysis on
the eigenvalues of C. Significant examples of non-sufficient stability condi-
tions, obtained as a result of this eigenvalue analysis, will be discussed in the
following.

If the numerical solution of equation (10.1.25) is designated by UJ, the full
solution Un will be obtained at time level n by

Un=2:; Ujn. VU) (10.1.28)
j

as an approximation to the exact solution U(n ~t) at t = n ~t. For an
individual mode 0 the amplification factor z(O) of the numerical scheme
(10.1.25) is defined by the behaviour of the homogeneous or transient part as

U'tj= z(Oj)Ul/j-1 = zn (OJ) Uo (10.1.29)

where zn is z to the power n. This amplification factor of the scheme,
associated with the mode 0, is an approximation to the exact amplification
factor G, depending on the selected time integration.

lntroducting equations (10.1.28) and (10.1.29) into the homogeneous com-
ponent of equation (10.1.25) and considering each mode separately leads to

CVU)=z(Oj)VU) (10.1.30)

This generalizes equation (8.2.17), which shows the Von Neumann ampli-
fication factor 0«1» to be the Fourier symbol of C:

I CeltP = 0«I»e1tP (10.1.31)

The single Fourier harmonic of the Von Neumann analysis is replaced in the



376

matrix method by a more general modal representation as the eigenvectors of
the space operator. As will be shown in the following chapter, when the
boundary conditions are periodic, both representations are identical.

General time-integration method

Before we define the stability condition on the amplification factor z we
consider first a more general family of time-integration methods which
contains the two-level method (10.1.25) as a particular case. A large number of
methods for the numerical resolution of ordinary differential equations are
available, and general presentations can be found in Gear (1971), Lambert
(1973) and Dahlquist and Bjork (1974). A summary of some of the most useful
methods will also be given in Chapter 11.

A general multi-step method of order K applied to the modal equation
(10.1.21) can be written at time level n as

K K2: ak wn+k = ~t 2: {3k([lW + q)n+k (10.1.32)
k;O k;O

and the method is explicit if {3k = 0 for all k ~ O. Otherwise the method is
implicit. Note that the ak and {3k have to satisfy consistency conditions,
namely

KKK2: ak = 0, 2: kak = 2: {3k (10.1.33)
k;O k;O k;O

Introducing the time shift operator E, (Ek is E to the power k):

Ewn = Wn+l
-

k k (10.1.34)

E wn= wn+

equation (10.1.32) can be written as a polynomial in E:

Pl(E)wn = P2(E)qn (10.1.35)

where

K
PI (E) = ~ (ak -- ~tO{3k)Ek (10.1.36)

k;O

K
P2(E) = 2: {3kEkqn (10.1.37)

k;O

Equation (10.1.35) generalizes formulation (10.1.25), which corresponds to
PI =E- C.

Stability condition on the time- and space-discretized equation

Since the stability of the scheme depends only on the (transient) SOI~on-of~trr:-
homogeneous equation it is sufficient to investigate solutions of form (10.1.29)
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to

PI(E)wn=o (10.1.38)

Equation (10.1.38) will be satisfied by a solution of this form if z is a solution
of the characteristic polynomial:

PI(z)=O (10.1.39)

If PI is of order K, for a K-step method there will be K roots Zk of the
polynomial of order K:

K
PI(Z) = 2:: (ak-,1,ill{Jk)zk=O (10.1.40)

k=O

and the general solution of the homogeneous equation (10.1.38), defining the
transient behaviour of the numerical solution wn in time, for increasing n will
be given by

K
wn = 2:: w2zk' (10.1.41)

k=1

The numerical solution of this scalar equation will be stable if wn does not
increase without bound in time for n tending to infinity at fixed ,1,t. From the
above solution we can define the necessary stability condition for the time-
discretization scheme as the requirement that all the roots Zk should be of
modulus lower than, or equal to, one. That is,

I Zk I ~ 1 for all roots k = 1,..., K (10.1.42)

When some roots lie on the unit circle, Zk = I, they have to be simple.
Otherwise the solution would increase with time as tm, where (m + 1) is the
multiplicity of the root. This condition establishes a relation between the
selected time discretization (defined by the ak and (Jk coefficients of equation
(10.1.32» and the space discretization as characterized by the eigenvalues 0,
since

Zk = Zk(O) (10.1.43)

The condition (10.1.17) on the space discretization has to be always satisfied
for the system of ordinary differential equations (10.1.2) to be stable (or well
posed). For all the space discretizations, which satisfy this condition, the
associated numerical discretization in time will be stable if condition (10.1.42)
is satisfied. However, when applied to the matrix equation (10.1.25) this
condition does not always guarantee convergence and stability, according to
definitions (10.1.27), at fixed and finite times (n,1,t). This will be discussed in
more detail in Section 10.4.

The space discretization generates a representative set of eigenvalues OJ
which cover a certain region of the complex 0 plane, to be situated on the left
side of the plane including the imaginary axis for stability. If we consider the
trace of every root Zk(O), as 0 covers the whole spectrum OJ, in a complex
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Figure 10.1.1 Representation of stability regions in the complex {2 (space-
discretization) and z (time-discretization) planes

z-plane this trace will be represented by some line which has to remain inside a
circle of radius one. If some roots come outside the stability circle when {}
covers the range of the spectrum OJ the scheme is unstable (Figure 10.1.1).

In Figure 10.1.1 the vertical imaginary axis of the O-plane contains the
spectrum of the central discretized convection equation, while the negative real

Iaxis contains the spectrum of the central discretized diffusion equation. Note
also that the spectrum of the first-order upwind scheme for the convection
equation is concentrated in a single point on the real negative axis. I

Multiple roots with multi-step methods

A method with two or more steps will generate more than one root; in
particular a two-step method, which involves three time levels, will generate
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two roots, a three-step method, involving four time levels, will generate three
roots, and so on, and this for the same value of o. When there is only one root
the numerical time dependence is zn and is to be considered as the approxima-
tion introduced by the time-discretization scheme to the exact time depend-
ence. Hence, z(o) is the numerical approximation to e{)~t, since

z(o) ~ e{)~t= 1 +0 .:It+~+¥+ ... (10.1.44)

Therefore, the first term in the expression of z(o) which differs from the
Taylor development (10.1.44) defines the order of the method. For instance,
for the explicit Euler method, z(o) = 1 + 0 .:It, which is clearly of first-order
accuracy. The implicit Euler method is defined by

1
z=~1+0.:lt+(O.:lt)2 (10145)1 - 0 .:It . .

and since the quadratic term is not equal to the quadratic term in equation
(10.1.44) the method is only first-order accurate.

When more than one root is present the consistency of the scheme requires
that one of the roots should represent an approximation to the physical
behaviour (10.1.44). This root, called the principal root, is to be recognized by
the fact that it tends to one when O.:lt goes to zero. Denoting by Zl the
principal ('physical') root we have

lim ZI(O) = 1 (10.1.46)
{) ~t - 0

The other roots, called the spurious roots, represent a 'non-physical' time
behaviour of the numerical solution introduced by the scheme and can destroy
completely the stability of the scheme. For instance, we will see in the
following section that the leapfrog scheme has two roots since it is a three-level
scheme, and its first root Zl is accurate up to second order but its spurious root
Z2 starts at - I, and is the one that generates the instability when (0 .:It) < 0,

that is, when dissipation is present in the scheme, either physically for
diffusion equations or numerically for certain discretizations of the convection
equations. Note that the spurious root is not always responsible for instability
(see, for instance, Problem 10.8).

From equations (10.1.29) and (10.1.44) we can conclude that the time
behaviour of the numerical solution wn of the modal equation (10.1.21) is
described by

wn=wozn(O)-~(I-Zn(o» (10.1.47)

Returning to the full solution Un of equation (10.1.2) the above equation
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translates to, recalling that w represents an arbitrary mode Uj
N

Un = 2:: Ujn. VU)
j=1

= f. [ UOjzn(Oj) -!)J. (1 - zn(Oj» ] . V(j) (10.1.48)
j= 1 OJ

This is to be compared with the exact solution (10.1.16).
IThe error in amplitude is defined by the ratio of the modulus of I z I and the

amplitude of the analytical solution (10.1.24) with 0 = ~ + 111:

I zl£D=--rAI (10.1.49)
e

and the phase error will be defined by the phase <I> of z, writing r

z = I z I e1'i' (10.1.50)

and

£~ = <1>/(11 dt) (10.1.51)

10.2 THE SPECTRA OF SP ACE-DISCRETIZED OPERATORS

The matrix S represents the space discretization including the boundary
conditions, and in order to define the precise relation between space-
discretization and time-integration methods it is essential to determine the
spectrum of the eigenvalues O. This is investigated separately for the diffusion
and the convection equation for different sets of boundary conditions.

10.2.1 The spectrum for the diffusion equation Ut = auxx

Referring to Table 8.1, the central difference operator S is

S= ~ (£- 2 + £-1) (10.2.1)
dX

and its matrix representation is given in the third column, without the
inclusion of the boundary points. The complete matrix has to include these
points and this is dependent on the type of boundary condition and their
numerical implementation.

(1) If we assume Dirichlet conditions, that is, I

Uo = 1(0) = 0 UN = I(N) = b over the interval 0 ~ x ~ L

the equation for the first mesh point, i = 1, will be

dul a- = --z (0 - 2Ul + U2) (10.2.2)
dt dX
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and the equation for the last point i = N - 1

dUN-l adt =":;1x:2 (b - 2UN-l + UN-Z) (10.2.3)

This completes the determination of the matrix S representing the space
discretization.

The system of ordinary differential equations can be written as

aa
-2 1 Ul -

1 - 2 1 . Axz
dU a-=- 1 -2 1 u. + . = S. U+ Q
dt Axz . .'.. .

ab1 - 2 UN-l --z (10.2.4)
Ax

The introduction of the boundary conditions has also led to the definition of
the non-homogeneous term Q containing the boundary contributions.

(2) When Yon Neumann boundary conditions are imposed at an end-point,
for instance,

auax= a at x= 0 and UN= b (10.2.5) I

the first equation, for mesh point Xo = 0, could be written from a one-sided
difference of the derivative condition as

1- (Ul - uo) = a (10.2.6)
Ax

leading to the equation for mesh point Xl, replacing Uo in the second
derivative:

dUl a aa
-=--z(-UI+UZ)-- (10.2.7)
dt Ax Ax

We obtain the matrix equation

aa- 1 1 UI - -

Ax
1 -2 1

dU a---=- 1 -2 1 . +. (10.2.8)
dt Axz '.. :

1 -2 1 .
ab1 -2 UN-I -

Axz
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This matrix is different from the previous one in equation (10.2.4» and will
have different eigenvalues and eigenvectors. If other implementations of the
boundary conditions are selected, other matrices will be obtained and some
could lead to eigenvalues which are unstable, that is, which have positive real
parts. This would be an indication that the problem is not well posed
numerically or analytically.

(3) Periodic boundary conditions imply that

uo=uNandu-l=uN-1 (10.2.9)

The first equation is written here for Uo as

duo a-d = ~ (UN-I - 2uo + UI) (10.2.10)
t ~x

and the last equation, written for UN-I, is

duN-I a- d = _ 2 (uo - 2UN-I + UN-2) (10.2.11)
t ~x

We have the same matrix structure as is obtained from Dirichlet conditions but
with the addition of a coefficient 1 in the upper right and lower left corners:

- 2 1. 1 Uo
1 -2 1 . .

dU a-=- . 1 -2 1 .. (10.2.12)
dt ~X2 . Ui

. .
1 -2 1 .

1 1 - 2 UN-I

Banded matrix notation

The matrices obtained for the diffusion equation have a very simple form; they
have a banded structure with three non-zero diagonals (and two non-zero
corner elements for the periodic matrices). As can be seen from Table 8.1, this
is also the case for the matrices associated with the convection equations, and
results from the three-point difference schemes applied to the space deriv-
atives. If higher-order formulas would have been applied (for instance, a
fourth-order difference approximation for uxx) we would obtain five non-zero
diagonals but still maintain the same banded structure. In two and three
dimension~, with finite differences or finite element space discretizations, we
would also obtain a similar structure, constant coefficients along diagonals if
the problem is linear with constant coefficients and the mesh Cartesian and
uniform (see also Problems 10.2 and 10.3).

Following Lomax (1976) we introduce a compact notation for a banded
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matrix:
bo bl bz . .
b-1 bo bl bz
b-z b-1 bo bl bz

B(...b-z,b-l,bo,bl,bz,...)= b-z b-1 bo bl bz. . . . .. . . . .. . . . .. . . . . .. . . . . .
b-z b-1 bo bl bz

b-z b-1 bo bl

(10.2.13)

where b:tk represent the elements on the kth diagonal above or below the main
diagonal k = O. With this notation the tridiagonal matrices of equation

(10.2.4) can be written as B(I, -2,1), and equation (10.2.4) as

dU a-
d =~B(I,-2,I)U+Q (10.2.14)

t ~x

Hence this provides a short-hand notation for the matrix representation of the
space-discretization operator S, which is associated here with a finite difference
formula of second-order accuracy for the second derivative operator:

S=~ (£-2+£-1)=> ~ B(I, -2,1) (lb.2.15)
~x ~x

The periodic matrices with 1 in the two corners will be indicated by
Bp(b-z, b-l, bo, bl, bz, ...); the matrix in equation (10.2.12) is written as
Bp(l, -2,1) and the equation as

dU a-
d =~Bp(I,-2,I)U+Q (10.2.16)

t ~x

The matrix in equation (10.2.8), arising from the imposition of Yon Neumann
boundary conditions, is tridiagonal but the coefficients are not equal on the
diagonals. If all the elements of a given diagonal are grouped into a vector jj
we can write the matrix of equation (10.2.8) as- . - T

B(I, b, 1) with b = (-1, -2, -2, ..., -2) (10.2.17)

Equation (10.2.12) reads

dU a --d = ~ B(I, b, I)U + Q (10.2.18)
t ~x

Eigenvalues and eigenvectors of tridiagonal matrices

It can be shown (Lomax, 1976) that the eigenvalues of a general tridiagonal
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matrix B(a, b, c) of order N, solutions of

detIB(a,b-O,c)I=O (10.2.19)
are given by

OJ=b+2J(aC)Cos(~) j=I,...,N (10.2.20)

and the corresponding eigenvectors v<j) with the components v~j) are defined
up to an arbitrary normalization factor Kj by

(j) =K.(~)(i- 1)/2 . .(~ ) . = 1 N (10 2 21)v, J c Sill' N+l ' ,..., ..

Observe that the eigenvectors are not dependent on the main diagonal term b.
For periodic matrices we have, for the eigenvalues OJ, solutions of

det I Bp(a, b - 0, c) I = 0 (10.2.22)

OJ=b+(a+C)COSW-I(a-C)SinW j=I,...,N (10.2.23)

or
OJ = b + a e- /2rj/N + c e/2'Kj/N (10.2.24)

with the eigenvector V(j) with components v~j):

v~j)=Kjel(2rj/N)i i=I,...,N (10.2.25)

Note the very remarkable fact that these eigenvectors are independent of
a, b, c but depend only on the structure of the matrix. Actually, the periodic
matrices (10.2.12) are a particular case of a circulant matrix, where two
consecutive lines differ by a permutation of their elements such that the last
element of line j is the first element of line (i + 1), the others being shifted by
one column position. The structure of such a matrix is

CI C2 C3 ... CN-I CN

c= CN CI C2 ... CN-2 CN-I (10.2.26)
CN-I CN CI ... CN-3 CN-2

C2 C3 C4 ... CN CI

and its eigenvalues, solutions of det I C - ill I = 0, are given by (Varga, 1962)

N-I
n.- ""' . li2r(j-II/N '- 1 N (10 2 27)i'J- LJ C,+I e J- ,..., . .

i=O

with the eigenvectors (10.2.25) independent of the Ci+ I coefficients.
We recognize these eigenvectors as the Fourier components elicl> with <I>

defined as in equation (8.1.12). The factor 2 appearing in equation (10.2.25)
comes from the fact that the periodicity is taken here from x = 0 to x = L,
while equation (8.1.12) results from a periodicity from x = - L to x = L after
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a reflection of the function u(x) onto the negative axis. This demonstrates that
the Fourier analysis and the matrix analysis are identical for periodic matrices,
which was the assumption at the basis of the Yon Neumann method.

Eigenvalues for the diffusion equation

If we consider equation (10.2.4) for the Dirichlet boundary conditions the
eigenvalues are, with a = c = 1, b = - 2,

OJ=~sin2 ( 1/"j ) j=I,...,N (10.2.28).6.x 2(N+ 1)

.For the periodic boundary conditions we obtain from equation (10.2.24)

OJ=~sin2 ( .?!-l ) j=I,...,N (10.2.29)

.6. x N

For the matrix (10.2.8), obtained from Yon Neumann boundary conditions at
one end and Dirichlet conditions at the other boundary, we cannot apply the
general formula (10.2.20) since all the diagonal elements are not equal.
However, for this particular case a closed form for the eigenvalues and
eigenvectors can still be obtained (Desideri and Lomax, 1981) as

4a . 2 (2j - I)1/" .
0 2OJ= -~sm J=I,...,N (1. .30)

.6. x (2N + 1)2

and the eigenvectors V(j) have the components, with a normalization factor
Kj,

~j) - K . . (i(2j - I)1/") . -
1 N (10 2 31)v, - Jsm 1- ,..., ..

2N+ 1

As can be seen, all three types of boundary conditions lead to a stable system
of ordinary differential equations for the second-order central difference
approximation of Uxx, since the stability condition (10.1.17) is satisfied for
a > O. Observe that all the eigenvalues are real and negative for this problem
when a is considered as positive. A negative diffusion coefficient will lead to an
unstable, exponentially increasing solution in time. The eigenfunction index j
can be considered as a 'frequency parameter' in space, since for small j, say
j= 1, the eigenfunction is smooth over the interval i = 1, ..., N, while for the
highest value of j, j = N, the eigenfunction y<N) undergoes roughly N/2
oscillations, representing a high-frequency behaviour (see also Problem 10.6).

By now, it should be clear to the reader, by comparing equations
(10.2.28)-(10.2.30), that the influence of the boundary conditions is an
integral and undissociable part of the matrix method, since the eigenvalue and
eigenvector structure is strongly dependent on the nature and the implementa-
tion of these conditions. Clearly, all types of conditions lead to stable schemes
for the diffusion equation, but, as we will see next, this is no longer the case for
the convective hyperbolic equations.
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10.2.2 The spectrum for the convection equation Ut + aux = 0

For convection equations the problem of the boundary conditions is much
more severe and its impact on the schemes is often dominating. The reason for
this strong influence is to be found in the physical nature of the convection or
propagation phenomena, since they describe 'directional' phenomena in
space. For instance, in one dimension, the propagation or convection of the
quantity u in the positive x-direction, when a > 0, implies that the value of u
at the downstream end-point of the computational region 0 ~ x ~ L is
determined by the upstream behaviour of u and cannot be imposed arbitrarily,
as was the case with the diffusion equation. However, from a numerical point
of view, depending on the space discretization, we might need information on
UN in order to close the algebraic system of equations. In this case, the
condition to be imposed on UN = U (x = L) cannot be taken from physical
sources and has to be defined numerically. This is called a numerical boundary
condition. The choice of this numerical boundary condition is critical for the
whole scheme. Intuitively we suspect that a good choice should be compatible
with the physics of the problem, but the stability analysis is the ultimate
criterion.

In general, this is a difficult task since,. as we will see next, even for very
simple cases we cannot find analytically the eigenvalues of the matrix S.
Actually, the analysis of initial boundary value problems for hyperbolic
equations is very complex from a mathematical point of view, since the
boundary conditions to be imposed are dependent on the structure of the
equations. For a > 0, we have obviously to impose, on physical grounds,
boundary values at the left end of the domain; while when a is negative, the
propagation occurs in the negative x-direction and the physical boundary
condition has to be defined at the right end of the domain. For a hyperbolic
system of equations, with the simultaneous presence of positive and negative
propagation speeds (as is the case for the Euler equations in subsonic flows) the
problem becomes more complex. More detailed information in the framework
of the Euler equations can be found in Volume 2. The reader interested in
more mathematically oriented work can refer to Kreiss (1968, 1970), Gus-
tafsson et al. (1972) and Gustafsson and Kreiss (1979), and to an interesting
review by Yee (1981), where additional references can be found.

Upwind space discretization

Let us consider a first-order upwind scheme:

du; adt= - ~ (u;- U;-I) (10.2.32)

for the interior points (also called the interior scheme). A boundary value

u(o, t) = g(t) x = 0 (10.2.33)
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Figure 10.2.1 Boundary conditions for hyperbolic problems

will be imposed at the ~ft end boundary, when 0 > O. For the first mesh point
i = 1 we would write (Figure 10.2.1)

dul 0 0 0- = - - (UI - uo) = - - UI + - g(t) (10.2.34)
dt ~x ~x ~x

At the downstream end the equation for i = N is

dUN 0-= - - (UN- UN-I) (10.2.35)
dt ~x

and no additional, numerical condition is necessary. The semi-discretized
system (10.1.2) becomes in this case,

01 0 U\ - g(t)
-1 1 0 . ~xO

dU - 0 -1 1 Ui-1
-=- +
dt ~x . Ui.

. Ui+l
-1 1 0 :

- 1 1 UN 0

(10.2.36)
The eigenvalues of this matrix are all identical and equal to

-0OJ = - (10.2.37)
~x

Since these eigenv8Jues are negative, when 0 > 0, system (10.2.36) is stable and
a suitable time-integration scheme is easily found, as seen by several examples
in previous chapters. However, the matrix is unstable for 0 < O.

In order to illustrate the dominating influence of boundary conditions let us
look at what happens if we impose the physical condition at the downstream
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end. In this case, there is no information on uo, to start equation (10.2.34), and
the last equation for UN is overruled by the boundary condition UN = g(t).

However, the last equation

dUN-I - a
- d = - (UN- I - UN-Z) (10.2.38)

t ~x

is separated from the physical information at UN. Hence there is no way of
ensuring that a numerical boundary condition at Uo will lead to a downstream
value satisfying the boundary condition UN = g(t), and the problem is not well
posed. This is illustrated in Figure 10.2.1, where the characteristic dxldt = a
is shown, along which U is constant. If A represents the value of uo, the
corresponding value of UN is B and imposing UN = C, for instance, is not
compatible with Uo = A. In order to stabilize the scheme for a < 0 we have to
impose a boundary condition at i = N, UN = g(t) and apply a forward space
discretization (see Problem 10.7).

Central space discretization

Applying a central space difference to the convection equation, and consid-
ering periodic boundary conditions, leads to the periodic version of the matrix
structure obtained in Table 8.1 for the wave equation, written here as

dU -a
-=- Bp(-l,O, + l)U (10.2.39)
dt 2~x

The eigenvalues are obtained from equation (10.2.23) and are purely
imaginary:

OJ=-~Isin (~ ) j=l,...,N (10.2.40)~x N

indicating that system (10.2.39) is stable for positive as well as negative values
of a.

What is shown here is that certain time-integration methods for system
(10.2.39) can lead to a stable numerical scheme. Equation (8.1.18) shows that
the explicit Euler method is unstaDle for this space discretization, but others,
such as the Euler implicit or the leapfrog method, will be stable for the same
space discretization.

If we consider the boundary conditions (10.2.33) for a > 0, then the first
equation would be written for U = UI as

dul a a a-= - - (uz - uo) = - - Uz + - g(t) (10.2.41)
dt 2 ~x 2 ~x 2 ~x

At the downstream end a numerical boundary condition has to be imposed in
this case, since the central differenced equation for UN would contain a
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contribution from a non-existent point UN+ I. A reasonable approach is to
apply a backward difference in space at U = UN instead of a central difference.

This leads to

dUN a-d = - - (UN- UN-I) (10.2.42)

t ~x

and the matrix equation (10.1.2) becomes

a0 1 - g(t)
- 1 0 1 UI 2 ~x 0

-1 0 1 :
0 Ui-1

dU a Ui +.dt - 2 ~x - 1 0 1 Ui+ I

-1 0 1 :
-2 '1 UN 0

(10.2.43)

This matrix has no analytically defined eigenvalues, and they have to be
computed numerically. Gary (1978) has shown that this matrix is stable. The
distribution of the complex eigenvalues is shown for N = 15 on Figure 10.2.2
and the real part of the eigenvectors for the lowest and highest eigenvalues, in
modulus, are illustrated in Figure 10.2.3.

As is seen on this example, all the eigenvalues have non-positive real parts
and the system is stable. This has also been shown theoretically by Dahlquist
(1978). If the boundary condition would have been taken at the downstream
end, i = N for a > 0 or if the boundary equation is applied for a < 0 (which is
equivalent to implementing a non-physically justified boundary condition at
x= 0) the real parts of the eigenvalues become positive and system (10.2.43) is
unstable, as expected from the above-mentioned considerations.

It is interesting to observe that the upwind scheme has a (unique) eigenvalue
(10.2.37), which is real and negative. This will generate a contribution e-Ot
in solution (10.1.12), multiplied by a polynomial in t, due to the multiplicity
of the eigenvalue. The important aspect to be noted is the damping of the
solution of the space-discretized equations, introduced by the negative
exponential there, where the analytical solution of the equation Ut + aux = 0 is
a pure wave with no damping. Hence the appearance of negative real parts in
the eigenvalues of the space discretization operator of convective hyperbolic
equations, indicates that this operator has generated a numerical dissipation.
This is to be put in relation with the numerical viscosity appearing in the
equivalent differential equation as well as to the presence of even-order
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Figure 10.2.2 Eigenvalue spectrum of matrix (10.2.43) for N = 15
(Reproduced by permission of AIAA from Lomax et 01., 1981.)

derivatives in the development of the truncation error. For instance, the
leapfrog sche~e applied to the central differenced convective equation does
not generate dissipation, as will be seen from Figure 10.3.2 below, and neither
has even-order derivatives in the truncation error.
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10.3 THE STABILITY OF TIME-INTEGRATION SCHEMES

We can now investigate the stability of various time integration methods when
applied to the space discretizations introduced in the previous sections.

10.3.1 Euler explicit scheme

This scheme corresponds to a forward difference of the time derivative,
leading to the modal equation

wn+ 1 = wn + 0 dtwn + qn (10.3.1)

Hence

C = 1 + 0 dt

Pl(E)=E-(l +0 dt)=E- C (10.3.2)
pz(E) = 1

The characteristic polynomial is of degree one, as for all explicit, two-time-
level schemes:

Pl(Z) = Z - (1 + 0 dt) = 0 (10.3.3)

and a single root exists:

Z = 1 + 0 dt (10.3.4)

The scheme is stable for all space discretizations associated with an eigen-
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value spectrum such that

11 + 0 At I ~ 1 (10.3.5)

or

[1 + Re(O At)]2 + (1m 0 At)2 ~ I (10.3.6)

Diffusion equation with scheme (10.2.4)

This is the scheme

n+l n a At ( n 2 n n ) 0 3Uj - Uj =~ Uj+l- Uj + Uj-l (1 . .7)

All OJ are real and negative, as seen from equations (10.2.28)-(10.2.30), and
the stability condition is

- 2 ~ - I Re(O At) I ~ 0 (10.3.8)

or

a At 1
0 ~ ~ ~"2 (10.3.9)

as derived by the Von Neumann method in Chapter 8.

Convection equation with central scheme (10.2.39)

This is the scheme

Ujn+l_Ujn= -~(U7+1-u7-1) (10.3.10)

with periodic boundary conditions and

(1= a At/Ax (10.3.11)

All eigenvalues OJ are purely imaginary, and the stability condition

1 + [/m(O At)]2 ~ 1 (10.3.12)

is never satisfied. The scheme is therefore unstable.

Convection equation with upwind scheme (10.2.36)

This is the scheme
Uf+l - Ujn = -(1(uf - U7-1) (10.3.13)

The eigenvalues OJ = - 0/ Ax and the necessary stability condition is

oAt0 ~ ~ ~ 2 (10.3.14)
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This is in contradiction to the more severe CFL condition (8.1.21) obtained
from a Von Neumann analysis. As shown in Figure 8.1.2, the scheme is indeed
unstable for a ~tl ~x > I. The reasons for this contradiction will be discussed
in Section 10.4.

10.3.2 Leapfrog method

This is an explicit three-level, two-step method:

wn+l_wn-I=2~f{}wn+qn (10.3.15)

Hence
- - - 1

PI (E) = E- 2~f{} - E-
- (10.3.16)

P2(E) = I

The characteristic polynomial is of second degree for this two-step method:

PI(z)=z-m~t-Ilz=O (10.3.17)

or

ZZ - m ~tz - 1=0 (10.3.18)

There are two roots:

z= +(0 ~t).1: J[(O ~t)z+ 1) (10.3.19)

which behave as follows, when ~t -+ 0:

Zl = 0 ~t + J[(O ~t)2 + 1) = I + (0 ~t) + ¥ + ... (10.3.20)

(0 ~/)zzz=O ~t-J[(O ~t)2+ 1]= -I +0 ~t-- ... (10.3.21)

2

The first root is the physical one, while the second starts at - I and is the

spurious root.

Diffusion equation with scheme (10.2.4)

Since all OJ are real and negative the modulus of the second root Zz becomes
greater than one and the scheme is unconditionally unstable.

Convection equation with central scheme (10.2.39)

This is the scheme with periodic boundary conditions:
11+1 n-1 ( II n ) (10 3 22)Ui -Ui =-aUi+I-Ui-1 ..

All eigenvalues are purely imaginary and both roots are of modulus one when
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I 0 ~t I ~ 1:
I ZII = I z21 = 1 for I 0 ~t I ~ 1 (10.3.23)

and the scheme is stable. With the eigenvalues (10.2.40) this is the CFL
condition

I ~ I ~ 1 (10.3.24)

For I 0 ~t I > 1, we have

I ZII = I 0 ~t :t )[02 ~t2 -lJI (10.3.25)

and the scheme is unstable.

Convection equation with upwind scheme (10.2.36)

This is the scheme
u;n+ 1- u;n-1 = - 2u(u;n - u7-1) (10.3.26)

Since all the eigenvalues are negative and real, the scheme is unstable.

10.3.3 Euler implicit (backward) scheme

This corresponds to the backward difference in time:

Wn+1 = wn + 0 ~twn+1 + qn+1 (10.3.27)

leading to

1
C= 1 - 0 ~t

PI(E)=(1-0 ~t)E-l = C-IE-l (10.3.28)

P2(E) = E

The characteristic polynomial is of the form

PI (z) = (1 - 0 ~t)z - 1 = 0 (10.3.29)

leading to the amplification factor

1Z = 1 n (10.3.30)
- ~, ~t

This scheme will therefore be stable for all well-posed space discretizations for
which Re(O ~t) ~ O.

10.3.4 Stability region in the complex 0 plane

Each time-discretization scheme is represented by a unique relation between z
and 0, determined by the solutions Z = z(O) of PI (z) = O. When the stability
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1m (.Q..6 f)

7/ Re(.Q..6f)

Figure 10.3.1 Stability region for the Euler explicit scheme in the

complex «(}~t) plane

limit for z (equation (10.1.42» is introduced into this equation, under the form
z = eiO, 0 ~ (J ~ 211', representing the stability circle of Figure 10.1.1, a corres-
ponding stability region is defined in the (0 .1./)-plane through the mapping
function z = z(O).

For the explicit Euler scheme we have z = 1 + 0 .1./, and in the (0 .1./)-plane
the stability region is a circle of radius 1 centred around 0.1./ = - 1
(Figure 10.3.1).

Schemes such as the central differenced convection equation, with their
eigenvalue spectrum purely imaginary, are outside the stability circle and are
unstable.

For the leapfrog scheme, we have

2(0.1./) = z _! (10.3.31)
z

which becomes for z = eiO

(0 .1./) = I sin (J (10~3.32)

The stability region of the leapfrog scheme is therefore a strip of amplitude :t 1
along the imaginary axis (Figure 10.3.2). It is seen immediately that the
diffusion equation with its real negative eigenvalues or the upwind convection
equation are unstable. Since negative values of (0.1./) correspond to the
presence of a dissipative mechanism (or numerical viscosity), for hyperbolic
equations, it is seen that the leapfrog scheme is totally unadapted to the
presence of dissipative terms, see however problem 10.18.

For the implicit Euler scheme we have

(0.1./) = (z - 1)/z (10.3.33)
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Figure 10.3.2 Stability region for the leapfrog scheme

ion of
tobility

.f1f)

Figure 10.3.3 Stability region for implicit Euler scheme

For z = eiO the limit of the stability region is defined by

(0 ~t) = 1 - eiO (10.3.34)

and represents a circle centred on 0 ~t = 1 of radius 1 (Figure 10.3.3).
Since for I z I < 1, 11 - 0 ~t I > 1 the stability region is outside the circle

and is seen to cover even regions in the 0 plane where the space-discretized
equations are unstable. Hence all the schemes seen so far will be stable with the
implicit Euler time integration.

10.3.5 A realistic example (Eriksson and Rizzi, 1985)

The matrix method of analysis of stability and transient behaviour has been
applied by Eriksson and Rizzi (1985) to a realistic computation of the full
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system of Euler equations for the flow around an airfoil at supercritical speeds,
generating a shock wave on the suction surface of the airfoil. The purpose of
the investigation was to analyse the influence of artificial dissipation and the
least-damped transients which are responsible for the slowing down of the
time-asymptotic convergence to steady state. As can be seen from equation
(10.1.18), the eigenvalues with the lowest real negative part will remain at large
times.

The system of Euler equations is discretized by central differences of the
nature of equation (10.2.43), and a second-order accurate time-integration
scheme is applied, with a single root Z equal to

z= 1 +0 ~t+¥+~ (10.3.35)

All eigenvalues and eigenvectors were computed numerically.
As discussed previously, when the scheme does not generate any internal

dissipation, as in the case of central differencing, artificial dissipation has to be
introduced in order to counteract the non-linear instabilities, and the authors
investigated the effect on the eigenvalues and eigenvectors of different forms of
artificial viscosity.

The flow situation being considered is defined by an incident Mach number
of M = 0.8 at 0° incidence on a NACA 0012 airfoil. The calculations

1.0

O.

Cp O.

0.5

(64x14)

1.0

Figure 10.3.4 Pressure distribution on the NACA 0012 airfoil
calculated on a 64 x 14 mesh at upstream Mach number of 0.8
and 0° incidence. (Reproduced by permission of Academic

Press from Eriksson and Rizzi, 1985.)
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Figure 10.3.5 (a) Eigenvalue spectrum on a mesh of 32 x 7 points in the complex z-plane for a
central discretization and no dissipation. (b) and (c) Imaginary part of eigenmodes of the velocity
field associated with the unstable eigenvalues 1 and 2 on a mesh of 32 x 7 points. (Reproduced by

permission of Academic Press from Eriksson and Rizzi, 1985)
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Figure 10.3.6 (a) Eigenvalue spectrum on a mesh of 32 x 7 points in the complex z-plane for a
central discretization with dissipation. (b) and (c) Imaginary part of eigenmodes of the velocity field
associated with the eigenvalues I and 2 on a mesh of 32 x 7 points with dissipation added.

(Reproduced by permission of Academic Press from Eriksson and Rizzi, 1985.)
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performed on a coarse mesh of (64 x 14) mesh points gave the pressure
distribution shown in Figure 10.3.4. Two figures show here the effect of the
dissipation on the otherwise unstable scheme. Figure 10.3.5 shows the
eigenvalues in the z-plane when no dissipation is present, clearly indicating
that some eigenvalues are outside the stability circle I z I = 1, on a mesh
(32 x 7). The imaginary part of the velocity field modes, associated with the
eigenvalues indicated 1 and 2, are shown in Figures 10.3.5(b) and 10.3.5(c).
Adding dissipation stabilizes the scheme, and the modifications of the
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Figure 10.3.7 Eigenvalue spectrum on a mesh of 64 x 14 points in the
complex 0- and z-planes. For a central discretization with the addition of
dissipation. (Reproduced by permission of Academic Press from Eriksson and

Rizzi, 1985.)
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spectrum and of the most unstable modes can be seen from Figure 10.3.6,
which shows the new position and associated eigenvectors of the two least-
damped eigenvalues I and 2. Comparing the structure of the eigenmodes it is
seen that the unstable modes have a strong oscillatory structure, while the
stabilized modes appear to behave very smoothly.

Similar behaviours can be investigated for finer meshes, and Figure 10.3.7
displays the spectra of eigenvalues in the {}- and z-planes for a mesh 64 x 14
after addition of artificial viscosity terms. The reader will find more details and
additional mode representations in the original reference.

10.4 EVALUATION OF STABILITY CRITERIA

The difference in implications of the two stability conditions (7.2.25) and
(7.2.35) may appear, at first, rather academic to a non-mathematically
oriented reader. They have, however, very deep and practically important
consequences, particularly with regard to the matrix method, and these
implications will be discussed in this section for two-level schemes. An
example has already been shown with the necessary stability condition
(10.3.14) for the upwind discretization on the convection equation, which is
not sufficient for practical computations. According to the definition (7.2.25)
of stability, the error en which is amplified by the matrix (c)n, for a two-level
scheme, should remain bounded at fixed ~t, for n going to infinity. This
implies that

II en II ~ II Cn II . II eo II < K at fixed ~t, n -+ IX> (10.4.1)

From the eigenmode decomposition (10.1.48) and the fact that z is to be
considered as an eigenvalue of C, following equation (10.1.30), it is seen that
the error behaves as

N
en = L:; eOjzn({}j) V(}) (10.4.2)

j=l

and will tend to zero when n tends to infinity if I z I < I. Hence since all
eigenvalues have to be in absolute value lower than one, the stability condition
(7.2.25) requires the spectral radius of C to be lower than one:

p(C) ~ 1 (10.4.3)

and eigenvalues z = I have to be simple. This condition therefore ensures that
II en II -+ 0 when n -+ IX>.

Practical computations are, however, performed at finite values of n, and
the above condition does not ensure that the norm II Cn II does not become
very large at finite values of n before decaying for n tending to infinity. In
order to guarantee that this would not happen following equation (7.2.35) we
have to require II Cn II to remain uniformly bounded for all values of n, ~t
(and ~x), such that

II Cn II < K for 0 < n ~t ~ T (10.4.4)
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In particular, this condition or bounded errors when .1t -+ 0, n -+ 00 at fixed

values of (n .1t) is required by the equivalence theorem of Lax and the
convergence condition (7.2.38). That is, the consistent difference scheme will
converge to the exact solution when .1t, .1x tend to zero, if and only if the
difference scheme is stable for this refinement.

Let us investigate the example of the upwind scheme applied to the
convection equation. The associated matrix C is obtained from equations
(10.2.36) and (10.3.2) as

1-(] 0
(] 1-(] 0

Cu = 0 (] 1 - (] (10.4.5)
0

0 (] (1-(])

Its eigenvalues are (1 - (]) and the condition (10.4.3) on the spectral norm leads
to the necessary stability condition 0 < (] < 2. On the other hand, condition
(10.4.4) on the boundedness of the norm of the matrix C for all n, .1t and .1x
is, in this particular case (Richtmyer and Morton, 1967),

II CU II Lz = (] + 11 - (] I + o(~) < 1 (10.4.6)

if the matrix is of size N x N.
The norm of Cu will remain uniformly bounded by one, independently of

III and .1x for (] ~ 1. This condition is also obtained from the Yon Neumann
analysis, as shown in Chapter 8. A detailed investigation of the behaviour of
the norm of matrix (10.4.5) in the range 1 < (] ~ 2 at finite values of n has
recently been performed by Hindmarsh el al. (1984). By evaluating analy-
tically the maximum norm of C:, II C: II~, it is found that, although II C: II~
tends to zero as n -+ 00 for (] < 2, it reaches very high values at some
intermediate values of n. Typically, it is found that

( )N-l max II C: II~ ~ _2 (] (10.4.7)
n~l -(]

which becomes very large at high values of Nand (] close to two.
Figure 10.4.1 shows the behaviour of II C: II~ for (] = 1.2 as a function of n

for N = 40 and N = 100. Observe the scale of the vertical axis and the Yon
Neumann amplification factor On = (1.4f, which follows the rise of II C,711~

quite closely. The values of the bounds for the maxima of II C,711~ as a function
of Nand (] are shown in Figure 10.4.2, and formula (10.4.7) is a good
estimate. Hence for any value of (] in the range 1 < (] < 2 errors will be
considerably amplified before being damped when n -+ 00.

Referring to Section 10.3, the other examples do lead to the correct stability
conditions, in agreement with the Yon Neumann method. This is due to the
fact that the considered matrices are symmetric or normal, so that in the L2
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Figure 10.4.1 Growth rate of norm of II C~ II~ as a function
of n. (From Hindmarsh ef 01., 1984)
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Figure 10.4.2 Maximum of norm IIC~ II~ as a function of N
at different values of u. (From Hindmarsh ef 01., 1984)

norm

II Cn IILl = pn(C) (10.4.8)

and the condition on the spectral radius (equation (10.4.3» is a necessary and
sufficient one for stability according to equation (10.4.4). Otherwise we should
apply definition (10.4.4) directly and attempt to estimate the norm II Cn II.

Although the Von Neumann stability condition (equation (8.2.24» refers to
the spectral radius of the amplification matrix G (which is the discrete Fourier
symbol of C(el~), equation (8.2.17), or can be viewed as the eigenvalues
of C for the Fourier modes), the Von Neumann analysis will mostly lead to
the correct stability criteria even for non-periodic boundary conditions. The
reason for this does not seem to be very clear. Most probably it is connected to
the particular and unique properties of Fourier transforms and to the fact that
conditions (8.2.24) apply to each Fourier mode separately, each mode being
amplified independently from the others. As a consequence, a large range of .
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situations can be defined for which the Yon Neumann condition (8.2.24) is
necessary and sufficient for stability according to definition (10.4.4) (see
Richtmyer and Morton, 1967, for a review of some of these conditions).

Furthermore, it can be shown that in many circumstances the presence of
non-periodic boundary conditions does not affect significantly the outcome of
a Yon Neumann analysis performed on the interior scheme (see, for instance,
Godunov and Ryabenkii, 1963). Therefore if doubts arise from an analysis of
the spectral radius of the discretization matrix C a Yon Neumann analysis
should be performed, and if a discrepancy occurs between the two results the
Yon Neumann condition is most likely to be more accurate.

10.4.1 The stability analysis of the convection-diffusion equation

Another spectacular example of the impact of the stability definition on its
practical requirements are related to the controversial statements found in the
literature for the space-centred, explicit Euler discretization of the time-
dependent convection-diffusion equation. This apparently simple equation,

~ ~ - ~ (10 4 9)at + a ax - a ax2 . .

can be discretized with a second-order accurate scheme in space and first order
in time:

u;n+ I - u;n = - ~ (u7+ 1- u7-1) + (3(u7+ I - 2uf' + u7-1) (10.4.10a)

2

or

u!'+l=({3-f) U7+1+(1-2{3)U;n+({3+f) u;n (10.4.10b)

with a = a ~t/ ~x and (3 = a ~t/ ~X2.
The history of the stability conditions for scheme (10.4.10) is illustrative, on

the one hand, of the difficulties of the Yon Neumann analysis as soon as a
scheme becomes more complex, even in one dimension, and, on the other, of
the implications of the definitions of stability.

The mesh Reynolds number controversy

The first controversy is connected with the Von Neumann analysis and the
erroneous statements sometimes found in the literature. Applying the standard
technique of Chapter 8 we obtain the amplification factor

G - 1 = - fa sin cf> + 2{3(cos cf> - 1) (10.4.11)

Historically, a first Yon Neumann stability condition was incorrectly derived
by Fromm (1964), and quoted in Roache (1972), as well as in more recent
textbooks. From a polar plot of G, we see that G(cf» is on an ellipse centred at
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ImG

G

Figure 10.4.3 Polar plot of G(t/» for the discretization (10.4.10) of
the convection-diffusion equation

(1 - 2{3) with semi-axes 2{3 and (J (Figure 10.4.3). By inspection of this plot we
are tempted to define the stability condition

(J ~ 2{3 ~ 1 (10.4.12)

as deduced by Fromm (1964) in a two-dimensional case. This necessary
condition is too restrictive, as will be shown next, and implies a limitation on

the time step

~ ~! (10.4.13)
~x 2

identical to that of the pure diffusion equation as well as a limitation on the
space mesh size ~x, independently of ~t, namely

0 ~xR = (J/{3 = - ~ 2 (10.4.14)
a

which is a limitation on the mesh Reynolds (or Peclet) number. This incorrect
concept of a mesh size limitation for stability has generated considerable
confusion (see, for instance, Thompson et 01., 1985, for an additional

clarification).
The correct results were obtained initially by Hirt (1968), applying a

different approach, but remained largely unnoticed, and an increase of interest
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in this subject has generated a variety of publications for one- and multi-
dimensional stability analyses of the discretized convection-diffusion equation
(Rigal, 1979; Leonard, 1980; Chan, 1984; Hindmarsh et al., 1984).

The intersections of the ellipse and the circle of radius one can be
determined from their equation in the co-ordinates ~,11, ~ = ReO, 11 = ImO:

Ellipse: [~- (1 -22fJ)] 2 + ~ = 1
4fJ u (10.4.15)

Circle: ~2 + 112 = 1

The stability condition I 0 I ~ 1 will be satisfied if the ellipse is wholly within
the unit circle, implying that there is no intersection between the two curves
next to the point'(I,O). Eliminating 11 between the two equations (10.4.15) we
obtain for the co-ordinates of the second intersection point:

~=(1-4~)u2~4fJ2 and 112=1-~2 (10.4.16)
U -4fJ

This value may not be smaller than one for stability, otherwise an intersection
point with 112 = 1 - ~2 < 1 would exist. Hence we should have

U2 ~ 2fJ (10.4.17)

and the necessary and sufficient Von Neumann stability condition for I 0 I ~ 1

is given by

u2 ~ 2fJ ~ 1 (10.4.18)

These conditions can also be derived directly from equations (8.6.24).
The second condition 2fJ < 1 also expresses that the coefficient of the Uf'

term in the right-hand side of equation (10.4.10b) has to be positive. A
negative value indicates indeed that u;n+ I decreases when u;n increases, which is

contrary to physical diffusion effects.
Compared with condition (10.4.12), a second restriction on the time step

appears as ~t < 2al a2, which is independent of the mesh size ~x. Conditions
(10.4.18) lead to

. (2a ~X2)~t ~ Mm 2' - (10.4.19)

a 2a

Observe that the scheme becomes unconditionally unstable when a -+ 0, as
seen in Section 7.1. Hence the addition of a viscosity (or diffusion) term auxx
has stabilized the otherwise unstable centrally discretized convection equation.
The CFL condition u ~ 1 is implied by equation (10.4.18) but is only necessary
and certainly not sufficient. In terms of the cell Reynolds number R, the
correct stability condition can be written, with R = ulfJ, as

R 1 2 1
u~-~- or u~-~- (10.4.20)

2 u Ru
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Figure 10.4.4 Stability region for the space-centred, explicit scheme (10.4.10)

and instead of the cell Reynolds number limitation (10.4.14) we obtain the
condition

2R ~ - (10.4.21)
CT

showing that stable calculations can be performed with high values of the mesh
Reynolds number. Figure 10.4.4 is a representation of the stability condition
(10.4.20) in a (CT, R) diagram. The region below the curve is the region of
stability. However, the value R = 2 plays a certain role, not with respect to
stability but, as will be seen below, with regard to accuracy. If we consider
scheme (10.4.10) as an iterative formulation for a steady-state problem it will
be shown that oscillations in the numerical solution will appear when R > 2.

The stability criteria from the matrix method

In an investigation of the stability of the explicit central differenced convec-
tion-diffusion equation (10.4.10), Siemieniuch and Gladwell (1978) applied
the matrix method with the criterion on the spectral radius p( C) ~ 1 for
stability. The C matrix associated with this scheme is given, for Dirichlet
boundary conditions, by

1 - 2(3 (3 - CT/2

(3 + CT/2 1 - 2(3 (3 - CT/2
C = (3 + CT/2 1 - 2(3 (10.4.22)

. .
(3 + CT/2 1 - 2(3

Following equation (10.2.20) the eigenvalues hj(C) are

hj(C) = 1 - 2(3 + 2(3~COS [j1l"/(N + 1)] (10.4.23)

and all eigenvalues are lower than one in modulus if - I ~ hj( C) ~ 1.
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Since the maximum and minimum values of Aj( C) are obtained when the
cosine is + 1 or - 1, we have the two conditions, when Aj is real,

-1~1-2fJ[1+~]

and

1-2fJ[1-~] ~ 1

That is,

1
0 < fJ ~ Ir1 n2/Al for R ~ 2 (10.4.24)

1 + .J[1 - R /4]

If R > 2, the eigenvalues (10.4.23) are complex and the condition I AI < 1 is
satisfied for

(1 - 2fJ)2 + 4fJ2(~ - 1) < 1

or

4
0 < fJ ~ ~ R > 2 (10.4.25)

R

For R = 2, we have a multiple eigenvalue Aj(C) = 1 - 2fJ, leading to the
condition fJ < 1.

These conditions were derived by Siemieniuch and Gladwell (1978) and are
clearly distinct from the Von Neumann conditions (10.4.20). Siemieniuch and
Gladwell did not explain the discrepancies they observed between their derived
stability limits and the inaccuracy or instability of their computed results in the
range 1 < a < 2.

Figure 10.4.5 shows the stability region in the diagram (a, R), according to
the spectral norm criterion. Lines (c) and (d) are the conditions (10.4.24) and

0-

Spectral radius
stability region

Van Neumann
1 -. stability region

R
2

Figure 10.4.5 Stability region according to the spectral radius and
Von Neumann conditions for equation (10.4.10) and Dirichlet

boundary conditions
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(10.4.25) with (:J -= (JIR, while (a) and (b) represent the Von Neumann
conditions (10.4.20).

Computations performed by Griffiths et 01. (1980) as well as by Hindmarsh
et 01. (1984) show, without any doubt, that error modes are strongly amplified
for finite values of n when the values of (J and R are chosen between the curves
(a), (b) and (c), (d). This amplification is strong enough to dominate
completely the solution un, although, as mentioned previously, the correct
steady state could be obtained for sufficiently large values of n. A detailed
investigation with other boundary conditions can be found in these two
references, confirming the inadequacy of the spectral radius condition in this
case and validating the Von Neumann conditions. The theoretical explanation
behind these differences, which has been referred to at the beginning of this
section, was strongly emphasized by Morton (1980).

10.5 NORMAL MODE REPRESENTATION

Another mode representation, the normal mode, offers a third alternative for
the numerical representation of solutions to discretized equations. It con-
stitutes perhaps the most powerful method for local analysis of the influence
of boundary conditions. In addition, it allows us to derive exact solutions of
stationary difference schemes and permits the analysis of the error propagation
through the space mesh.

This representation is actually the most general one, since it looks for a
solution of the following form at node point i and time step n:

Uin = uznxi (10.5.1)

where n is the time index when applied to u, but zn and xi are, respectively, Z
to the power n and x to the power i. Compared with the representation at the
basis of the matrix method, we represent the contribution to the spatial
behaviour of the numerical solution due to all the eigenvectors vV> of the space
operator S by uxi. When introduced into a numerical scheme formed by
the interior scheme and the boundary conditions we obtain a characteristic
equation which couples the time-amplification factor z with the space-
amplification factor x. For a boundary scheme, involving points N + I, N,
N - 1 at a boundary, a quadratic equation is obtained for x, and if x I and Xl

are the two solutions, the general solution will be

uf' = uzn(AXi\ + Bx~) (10.5.2)

where z = Z(XI, Xl). Therefore this method allows an investigation of the
effects of boundary conditions on the stability as developed by Godunov and
Ryabenkii (1963), Kreiss (1968), Osher (1969) and Gustafsson et 01. (1972).

An essential aspect of the normal mode analysis for the investigation of the
influence of boundary conditions on the stability of a scheme is connected with
a theorem of Gustafsson et 01. (1972), stating that the initial boundary value

,:Jg
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problem for the linear hyperbolic equation is stable if it is stable separately for
the following problems:

(1) Cauchy problem:
Ut + aux = 0 - CX) ~ x ~ cx), t> 0, u(x,O) = f(x)

(2) Right quarter problem:
Ut + aux = 0 0 ~ x ~ CX) u(O, t) = g(t), u(x,O) = f(x)

(2) Left quarter problem:
Ut + aux = 0 - CX) < x ~ 0 u(x,O) = f(x)

The Cauchy problem represents the interior scheme and is best analysed by a
VonNeumann method. This theorem therefore states that the interior scheme
has to be stable and that its stability could be destroyed by the boundary
conditions, but the inverse is not possible.

When considered in the half-space x ~ 0, a mode Xi with I x I > 1 will lead
to an unbounded solution in space, that is, Xi will increase without bound
when i goes to infinity. Therefore I x I should be lower. than one, and the
Godunov-Ryabenkii (necessary) stability condition states that all the modes
with I x I ~ 1, generated by the boundary conditions, should correspond to
I z I < 1. If, in addition, for I z I = 1 and I x I = 1 no solutions are found for
which the amplification factor z tends to its position on the unit circle by the
exterior, when I x I -+ 1 from the interior of the unit circle the condition is also
sufficient for stability, Kreiss (1968).

More details can be found in the references mentioned and also in
Richtmyer and Morton (1967). A particular note is to be made of the work of
Trefethen (1983, 1984), establishing a close relation between the boundary
stability as defmed by Gustafsson et al. (1972) and the sign of the group
velocity of the scheme at the boundaries. The method is quite powerful, but
often leads to very cQmplex if not intractable calculations.

10.5.1 Exact solutions of a space difference scheme

The normal mode representation in space xi has been applied by Godunov and
Ryabenkii (1964) to generate exact solutions of finite difference equations of
stationary problems in a way that parallels the time mode zn introduced with
equation (10.1.29). Considering a stationary equation, such as the convection
-diffusion equation, which we write here without source terms

au a2u
a-=a~ O~x~L

oX ax

u(O) = Uo x = 0 (10.5.3)

u(L) = UL x= L
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A space-centred, second-order difference discretization will lead to the scheme

Ui+I-Ui-l- Ui+I-2ui+Ui-1 '- 1 N -
1 (1054)a 2 -a 2 1- ,..., ..

~x ~x

or

(2 - R)Ui+ 1- 4Ui + (2 + R)Ui-1 = 0 (10.5.5)

where the mesh Reynolds or Peclet number R is introduced, defined by

R = ~ (10.5.6)
a

A solution Ui = xi to the difference equation (10.5.5) will exist for x solution of
the resolvent equation

(2-R)x2_4x+(2+R)=0 (10.5.7)

The two solutions, Xl, X2 are

2+R
XI = 1 X2 =- (10.5.8)

2-R

and the general solution

Ui = Axil + Bx~ (10.5.9)

becomes (2 + R)i

ui=A+B ~ (10.5.10)

The constants A and B are determined by the boundary conditions. For i
ranging from 0 to N, we obtain

NA = uox~ - UL B=~~ (10.5.11)

X2 - 1 X2 - 1

x~-lUi = Uo + (UL - uo) N (10.5.12)
X2 - 1

This exact solution of the discretized equation should be a second-order
approximation to the analytical solution of equation (10.5.3) in much the same
way that the solution z of equation (10.1.40) is an approximation of the exact
solution exp(O ~t). Indeed, the exact solution of equation (10.5.3) is

eRe(xIL) - 1U = Uo + (UL - Uo) Re I (10.5.13) e -

where the Reynolds (or Peclet) number is introduced:

aL
Re=- (10.5.14)

a
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At point Xi = i~x the exact solution has the same structure as equation
(10.5.12) and it is seen that X2 is an approximation to

eRe dx/L = eR

eR/2 1 + R/2 [ (a ~X)3 1
]= ~ = 1-=-R/2 1- -;- 12+ ... (10.5.15)

Hence we have

. [ ~ 2
]X~ = eRexi/L 1 + xi(a/v)3 -d- + 0(~X4) (10.5.16)

An essential aspect of a space mode analysis is the possibility of
investigating the numerical behaviour of the solution Ui. Solution (10.5.12) is a
second-order approximation to the exact solution u for values of the mesh
Reynolds number R, which are sufficiently low (typically of the order of one),
that is,

R/2 = 0(1) (10.5.17)

for expansions (10.5.15) to be valid. However, a deeper understanding of the
behaviour of Ui is obtained from the value of X2. For positive values of a, X2
will become negative for R > 2 and x~ will alternate in sign from one mesh
point to the next. Hence the numerical scheme will generate an oscillatory
behaviour of the computed solution (Figure 10.5.1).

This is best seen by investigating the spatial propagation of an error, for
instance, a round-off error, ei = Ui - Iii, where Iii is the exact solution of the

discretized equation. Since ei also satisfies equation (10.5.4) the error ei = exi
will behave as equation (10.5.12), with Uo and UL replaced by the errors at the

u

merical
lution
rR>2

x

1- 1 1

Figure 10.5.1 Typical behaviour of a numerical solution to the
stationary, convection-diffusion equation for mesh Reynolds

numbers larger than two
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boundaries. The same approach can be applied to investigate the effects of
other schemes and different implementations of boundary conditions than that

applied in equation (10.5.11).
It is interesting to observe that the application of a Jacobi iterative method,

as described in Chapter 12, to the solution of equation (10.5.4) leads to the
following scheme, taking n as an iteration index:

2a ( n+1 n) a ( n n ) a ( n 2 n n )~ Uj -Uj = -- Uj+I-Uj-1 +~ Uj+l- Uj +Uj-1
dX 2dX dX

(10.5.18)

Compared with the time-dependent scheme (10.4.10), with dt chosen as
dt = dx2/2a, that is, 2{3 = 1, the time-dependent scheme becomes identical to
the Jacobi iterative method (10.5.18) applied on the algebraic system obtained
by the space-discretized stationary terms (- aux + a uxx). Hence the considera-
tions of the previous section apply with regard to the danger of an oscillatory
solution when R > 2, so much that, as seen in Figure 10.4.4, when 2{3 = 1 the

stability condition reduces to R ~ 2.

10.5.2 Spatial propagation of errors in time-dependent schemes

The same analysis can be performed on time-dependent schemes, particularly
implicit ones, in order to analyse the spatial propagation of errors and provide
information on the influence of the solution algorithm on the stability of the
scheme. Let us consider as an example the implicit upwind schemes for the

convection equation:
Ujn+ 1- Ujn = - u(Ujn+ 1- Ujn-+II) (10.5.19)

which requires the solution of the bidiagonal system

(1 + u)Ujn+1 - UUj~+11 = Ujn (10.5.20)

This can be solved by an algorithm marching in the positive x-direction from
i = 1 to i = N or in the negative direction from i = N to i = 1, according to the
boundary condition. However, both marching directions cannot be simulta-
neously stable. Indeed, if we look at the way the error propagates in this

space-marching algorithm:

e/,+I=Ujn+I_Ujn+1 (10.5.21)
where Ujn+ I is the exact solution of equation (10.5.20), ejn+ I satisfies the

homogeneous part of equation (10.5.20):
(1 + u)e/'+ I - uej~+11 = 0 (10.5.22)

A solution of the form e/,+1 = £xj gives x = u/(1 + u) and:

ejn+ 1 = £(~)j (10.5.23)
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Jf the boundary condition is imposed at the upstream end; = 0, then the error

behaves as

£;n+ 1 = £o
(~ ); (10.5.24)

1 + (J

Since the interior scheme is unconditionally stable for (J > 0 and unstable for
C1 < 0 (as can be seen from a Yon Neumann analysis), )( is lower than one and
the initial error £0 will be damped while progressing in a postive marching
sweep from; = 1 to ; = N. However, if we impose a boundary condition at the
downstream end, and solve the system by an algorithm marching in the
negative direction, we would have, with £N the error at the downstream

boundary,

£7+1 = £N(~)(;- N) = £N(~)(N- i) (10.5.25)

The initial error £N is seen to be amplified by this algorithm, which has
therefore to be rejected. This, of course, is in agreement with the physical
properties of the convection equation with a > 0, as discussed previously.

Summary

The matrix method for stability analysis takes into account the effects of
boundary conditions and is based on the eigenvalue spectrum of the space-
discretization operators. In addition, through the numerical estimation of the
eigenvalues we can evaluate effects such as non-uniform meshes or non-
constant coefficients. When the boundary cqnditions are periodic, the matrix
method becomes identical to the Yon Neumann method, since the eigenvectors
of all periodic matrices with constant coefficients are equal to the Fourier

; harmonics.
This approach also allows us to analyse separately the properties of the

space discretization and of the time integration. For a given discretization
in space we can select appropriate time integrations with stability regions
containing the spatial eigenvalue spectrum. Hence a space discretization
cannot be said to be unstable by itself when Rcl2 ~ O. It is only when it is
coupled to a time integration that we can decide upon stability. For instance,
the example of the central discretization of the convection term shows that it is
unstable with the explicit Euler method but stable with a leapfrog scheme or a

l Runge-Kutta method.
I Note that the stability conditions on the spectral radius are only necessary
i but not always sufficient for stability, as seen in a few significant examples. It is

also of interest to compare the representations of the numerical solution
r applied in the various stability investigations, as summarized in Table 10.1.I The Yon Neumann method relies on a Fourier decomposition of the

numerical solution in space, while the matrix method takes the eigenvectors
of the space-discretization operator, including the boundary conditions, as a
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basis for the representation of the spatial behaviour of the solution. The
associated time behaviour is represented by a local power law in an amplifica-
tion factor z, with the time index as an exponent.

The third approach is the normal mode representation, which generalizes
further the spatial eigenmode decomposition of the matrix method by
replacing it with a local representation as a power law in a variable )(, with the
mesh point index i as an expolient. This is a powerful representation, due to its
simplicity and generality, when linked to a similar representation in time,
particularly for boundary conditions. It also allows investigations on the error
propagation through a spatial mesh and leads to guidelines on the parameters
of a scheme and (or) on resolution algorithms in order to avoid error growth.
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PROBLEMS

Problem 10.1

Derive the discretization matrix S for the diffusion equation u, = auxx, with conditions
(10.2.5), by applying a central difference at x = 0, between i = - I and i = I. Use this
equation to eliminate u - I in the equation written for Uo. Obtain the matrix equation for
the vector UT = (uo, U(, ..., UN-().
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Problem 10.2

Derive the matrix form of the discretization operator for the two-dimensional diffusion
equation u, = a(uxx + Uyy) on a Cartesian mesh ~x = ~y = 1, on the square 0 ~ x ~ 5,
0 ~ y ~ 5, for constant Dirichlet conditions u = a, on the boundaries and the five-point
Laplace operator for the space discretization. Classify the vector U by selecting the
unknowns Uij, first by columns (or by rows) and also by diagonals.
Hint: In the first case: UT = (Ull, UIZ, ..., UIN; UZI, UZZ, ..., UZN; U3l, ...). In the second
case: UT = (UII; UZI, UIZ; U31, UZZ, U13; U4l, U3Z, UZ3, U14, ...)

Problem 10.3

Solve' Problem 10.2 with a finite element space discretization and with bilinear
elements.

Problem 10.4

Write the equations obtained in problems 10.2 and 10.3 under the form of banded
matrices notation B( - b-z, b-l, bo, bl, bz, ...).

Problem 10.5

Derive the matrix structure for the diffusion equation u, = auxx, applying a fourth-
order formula for the second derivative in space. Consider Dirichlet boundary
conditions.
Hint: Obtain

dU a-=- B( -l 16 -30 16 -1 ) Udt 12~xz " "

Problem 10.6

Compute the eigenvalues and eigenvectors of the central, second-order derivative
approximation Sui=l/~xz(ui-I-2ui+ui+I)' whose matrix structure is
SU= I/~xzB(I,-2, I)U, for a mesh with 11 points and Dirichlet boundary condi-
tions. Derive the diagonalization matrix Twhose columns are the eigenvectors. Control
your results by a direct computation of the right-hand side of equation (10.1.8) and plot
the eigenfunctions as a function of the mesh point number i.
Hint: The matrix has (N - 2) lines and columns, starting at i = 1 to i = 10; the
equations for i = 0 and i = II are removed from the system since the values Uo and UII

are known.

Problem 10.7

Define the matrix structure for the convection equation u, + aux = 0 for a < 0, applying
a forward space differencing of first order. Show that it is stable when a downstream
boundary condition is applied.

Problem 10.8

Analyse the stability of the two-step (three-level) method

un+I+4un-5un-I=2~t[(~) + (~)]
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for the modal equation

dw
-=(}w+q
dt

Calculate the characteristic polynomial and its roots and develop in a Taylor series for
~t -- O. Show that the scheme is always unstable.

Problem 10.9

Repeat Problem 10.8 for the two-step (three-level) Adams-Bashworth scheme

Un+l- Un= -i~t[(~) -3(~)]

Apply to the diffusion equation with discretization (10.2.1) and to the convection
equation with schemes (10.2.32) and (10.2.39). Calculate numerically the trace of the
two roots for real negative values of {} and for purely imaginary ones.
Hint: Obtain

Z:t = l(1 + ~{} ~t :t J[1 + {} ~t -1{}2 ~t2]

Show that the scheme is weakly unstable for the convection scheme (10.2.39) ahd
conditionally stable for the other two schemes.

Problem 10.10

Consider the space operator of the Lax-Friedrichs scheme for the convection equation
and the associated system:

dui a I
-=- (Ui+l- Ui-l) +-(Ui+l- 2Ui+ Ui-l)
dt 2~x 2

[ a_I I -1 ]= -- (E- E )+-(E-2+E ) Ui

2~x 2
Determine the space discretization matrix with periodic boundary condition and
calculate its eigenvalues. Represent them in the complex {} plane. Show that with an
Euler explicit method the scheme is stable under the CFL condition. Observe, by
comparing with equation (10.2.40), the influence of the added terms in the space
operator, providing a negative real part to the eigenvalues.

Problem 10.11

Repeat Problem 10.10, applying Dirichlet conditions at both ends. It is assumed that
the downstream conditions are known.

Problem 10.12

Analyse the error propagation for the Cranck-Nicholson scheme applied to the
convection equation with second-order space-centred differences. Show that there is
always one boundary error which is amplified, indicating that the Cranck-Nicholson
scheme is not suitable for convection equations. Define the stability properties of the
interior scheme by a Yon Neumann analysis.
Hint: The scheme is written as

n+1 n (1 [( n+1 "+1 ) ( " " )]Ui -Ui = -- Ui+1 -Ui-1 + Ui+I-Ui-1

4
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The Yon Neumann amplification factor is

G = ( 1 -~ I sin cI> ) I ( 1 + ~ I sin cI> )
and 1 G 1 = 1, showing neutral stability.

The error £in+ I satisfies U£in++11 + 4£in+ I - U£i~+11 = o.

The solution is £i+l=axi+bx~ with XI, X2 solutions of ux2+4x-u=0 and
)(IX2 = - 1
Hence one always has IxII>I, Ix21<1.

Problem 10.13

Determine the exact solutions of the scheme obtained by discretizing the convection
term in the convection-diffusion equation DUx = auxx, with a first-order backward
formula (for a > 0). Show that the solution will always remain oscillation-free for
a> O. Analyse the exact numerical solutions for the boundary conditions u(O) = Uo.
u(L)= UL for N~x= L and compare with equation (10.5.12). Calculate the error
£i = Ui - ai and show that the scheme is only first-order accurate.
Hint: The scheme is

~a
a(ui- Ui-I)=-(Ui+I-2ui+ Ui-l)

~x

Obtain XI = 1, X2 = (1 + R).

Problem 10.14

Apply the normal-mode analysis to the stationary convection-diffusion equation
(10.5.4) with the following numerical implementation of the boundary conditions,
resulting from a finite volume discretization where the boundaries x = 0 and x = L are
at the centre of the mesh cell:

2uo=u-l+uland 2UL=(UN+UN-I)

Obtain the exact numerical solution and compare with equation (10.5.12). Show that
the error at node i = 1 is given by

£1 = (uo - UL) [(ula)~x] 2 + 0(~X3)

8 1 - eRe
Hint: Write the equations for nodes i = 1 and i = N - 1 by introduction of the
boundary conditions in scheme (10.5.4). Obtain

R
(U2 - 3uI + 2uo) - - (U2 + UI - 2uo) = 0

2

R(2UL - 3UN-1 + UN-2) -"2 (2UL - UN-I - UN-2) = 0

Determine A and B in the general solution (10.5.9) from the above equations and
obtain

x~ - I R Uo - UL i
Ui= Uo+ (UL - uo) ~+- N X2

X2 -I 2 X2 -1

where )(2 is given by equation (10.5.8). Observe the additional term in the solution Ui
proportional to ~x in comparison with equation (10.5.12).
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Problem 10.15

Obtain the equivalent differential equation for the convection-diffusion equation
discretized by scheme (10.4.10). Show that the scheme is globally first-order accurate.
Analyse the influence of the mesh Reynolds number on the accuracy of the represent-
ation of the diffusion term. Obtain the stability condition a < 2/R.
Hint: The equivalent differential equation can be written, as a function of a and R, as

Ut + aux - aUxx = - !aaRuxx + aR tlx({3 - a2/3 - 1/6)uxxx

a tlx2 2 3+ - (I - 3{3 - 2aR + lOa - 3a R)uxxxx + ...
12

Observe that for a = 2/ R the diffusion error is equal to the physical diffusion a of the
problem and completely destroys its influence.

Problem 10.16

Proof the relations (10.5.12) and (10.5.13) and derive equation (10.5.16).

Problem 10.17

Analyse the behavior of the exact numerical solution (10.5.12) to the convection-
diffusion scheme (10.5.4) for high values of the mesh Reynolds number R. Defining
e = 2/ R, obtain by a Taylor expansion in powers of e the following asymptotic
approximation for large values of R,

Ui- Uo 1-(-)i(1 +2ie)
~~ 1-(-)N(I+2Ne)

Show that this numerical solution has an oscillatory character which depends on the
parity of N. In particular, show that for N odd the right-hand side of the above solu-
tion oscillates between [- ie/(1 + Ne)] for i even and [(I + ie)/(1 + Ne)] for i odd.

Plot this solution and observe that the even points are close to Ui = Uo and satisfy the
left boundary condition (at i=O). Similarly, note that the odd points are close to
Ui = UL and satisfy the right boundary condition (at i = N).

For N even the right-hand side of the above solution oscillates between i/ N for i even
and - (I + ie)/Ne for i odd. Plot this solution and observe that the even points follow a
linear variation and satisfy both boundary conditions, while the odd points are on
another straight line which satisfies neither of the boundary conditions.

Problem 10.18

Consider the leapfrog scheme applied to the convection equation with the addition of a
dissipation term of the form

a4un-t a
a ~=~ (Ui+2 -4Ui+1 + 6Ui-4ui-1 + Ui-2),,-1

ax tlx
which damps high frequency oscillations, leading to the scheme

n+1 n-1 ( n " ) 2atlt ( 4 6 4 ),,-1 Ui -U; = -a U;+I-Ui-1 -~ Ui+2- Ui+l+ Ui- Ui-I+Ui-2

tlx

Determine the amplification factor z for Fourier modes and show that the scheme is
stable for a2 < I - 'Y/2 with 'Y = 16atlt/tlx4 and that 'Y has to be limited by 0 < 'Y < 1/2.

Show that the amplification factor is
z = -fa sin ci> ::t (I - a2 sin 2 ci> - 2-y sin4 ci>/2) 1/2.
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PART IV: THE RESOLUTION OF
DISCRETIZED EQUA TIONS

In the last two chapters of this book we will investigate some of the most
currently applied techniques for the resolution of either semi-discretized
equations (that is, systems of ordinary differential equations in time) or
algebraic systems of equations obtained generally after a space discretization
of a stationary problem.

As mentioned in the introduction to Part II dealing with the computational
approach, we have to make an essential decision as to the time dependence of
the formulation. If the physical problem is time dependent there is obviously
no choice; the mathematical initial value problem has to be discretized in time
and the numerical solution must be time accurate. On the other hand, for
physical stationary problems we can decide either to discretize the equations
in space and deal with a time-independent numerical scheme or maintain
the time dependency and discretize the equations in space and time, but aim
only at the time-asymptotic, steady, numerical solution. For time-dependent
formulations we deal with a system of ordinary differential equations in time,
and a large body of techniques have been developed to define and analyse
numerical schemes for time-dependent or, more precisely, initial value prob-
lems. The most widely applied of these techniques will be discussed in Chapter
II. With a stationary formulation in space we will generally deal with a
boundary value problem (for elliptic equations), and an algebraic system of
equations will be obtained. This algebraic system has to be solved in the lowest
possible number of operations. Various techniques to be applied for achieving
this will be discussed in Chapter 12.

It is important to observe that the methods developed for time-dependent
formulations can also be applied to some stationary problems, particularly if
the set of equations considered is parabolic or hyperbolic in one of the spatial
directions. For instance, the parabolized Navier-Stokes approximation (dis-
cussed in Section 2.4) is parabolic in x; the stationary form of the potential
equation (2.9.25) is hyperbolic in the x-direction for supersonic flows. Hence
the x variable can be treated in these cases as a time-like co-ordinate and the
methods for time-dependent problems can be applied.
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Conversely, all iterative methods presented in Chapter 12 can be cast in a
pseudo-time-dependent formulation by interpreting the iteration index as a
time index. This forms a bridge between stationary and non-stationary
formulations and enlarges the family of methods to be applied to obtain
solutions to physical stationary problems. We can indeed select the pseudo-
time operators in order to accelerate the convergence of the scheme, and an
illustration is provided by the preconditioning methods. This bridge also has as
an important consequence the fact that an iterative method can be analysed by
the techniques used for the stability analysis of time-dependent schemes, for
instance by a Von Neumann method.

From a spectral analysis of the errors of an iterative method appropriate
operations can be defined in order to damp slectively certain frequency
domains of the error spectrum. This philosophy is the basis of the most
powerful of the iteration techniques currently available, namely the multi-grid
method, to be presented in Chapter 12.



Chapter 11

Integration Methods for Systems of
Ordinary Differential Equations

Many methods are available for the solution of the system of ordinary differen-
tial equations obtained from the semi-discretization technique, whereby the
space operators are discretized separately from the time differentials. This
method (also called the method of lines) leads to a system of time-dependent
ordinary differential equations. As discussed in Chapter 10, the system
obtained in this way is stable when the eigenvalues 0 of the space-discretization
matrix S have non-positive real parts, that is, are located in the left half
(imaginary axis included) of the complex O-plane.

The stability condition of the time-integration scheme has to be compatible
with the particular form of the spectrum 0, that is the stability region of the
time-discretization method must include the whole spectrum of eigenvalues O.
For instance, the explicit Euler scheme has a stability region which does not
contain the imaginary axis of the O-plane, and will not be stable for a
a-spectrum on the imaginary axis like that generated by the central discretiza-
tion of the convection equation. However, it will be stable, conditionally, for
the diffusion equation if all the real eigenvalues are contained within the range
- 2 ~ (0 ~t) ~ O. Similarly, the leapfrog scheme is unstable in this latter case

since its stability region is limited to a segment of the imaginary axis. Hence, as
already noted, the leapfrog scheme is totally unadapted for dissipative
problems, and the Euler explicit scheme is not suitable for non-dissipative
space discretizations.

The group of methods suitable and adapted to all possible systems with a
stable 0 spectrum (that is, whose region of stability coincides with the left half
a-plane, including the imaginary axis) has been called A-stable (Dahlquist,
1963). In fact, it can easily be shown that A-stability can only be achieved with
implicit methods, since A-stability is equivalent to unconditional stability as
defined in Section 7.1. An essential distinction appears here between explicit
and implicit methods, since explicit time-integration methods will nearly
always lead to conditional stability, that is, with limitations on the maximum
allowable time step ~t.

Clearly, a problem which leads to a spectrum in the (0 ~t) plane with large
imaginary values and widely distributed real (negative) parts will be a good
candidate for an A-stable (implicit) method, where no ~t-restrictions will have

423
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to be imposed. This is an important advantage, particularly for stationary
problems, solved by a time-dependent formulation. In this case, the interest
lies in the time-asymptotic steady-state solution, and we look for an approach
allowing the largest possible time steps in order to reach the steady state in the
lowest possible number of operations. Since, in this case, the time accuracy of
the transient is of no importance, implicit methods are very well adapted.
Explicit methods can also be applied to these situations, but with limitations in
the maximum allowable time step. On the other hand, for time-dependent
problems, time-step limitations have to be introduced for reasons of accuracy,
and the additonal computational cost of implicit methods per time step is not

always justified.
The debate between implicit and explicit methods for stationary problems

is still open, and probably will remain so. Since, in practical problems, we
deal with non-linear equations, time-step restrictions often appear in implicit
formulations because of the generation of non-linear instabilities. Therefore
we have to balance the higher allowable time step against the greater number
of operations necessary to resolve the implicit algebraic system of equations.
Linear multi-step methods for fluid mechanical problems have been intro-
duced and analysed systematically by Beam and Warming (1976,1980), and
developed to operational computer codes for the Euler and Navier-Stokes
equations (see, for instance, Pulliam, 1984, for a description of the structure
and properties of these codes).

Methods based on a predictor-corrector sequence also have a wide spread
application, the most popular being the explicit McCormack scheme. We will
introduce them as an explicit approximation to the treatment of the non-
linearities of implicit multi-step methods. Other linearization techniques do
maintain the implicit character and have been applied by Briley and McDonald
(1975) and Beam and Warming (1976).

For multi-dimensional problems the implicit matrices are too large for direct
inversions and factorization techniques, reducing the problem to a succession
of one-dimensional implicit oprators which can be defined. These methods are
also known as alternating direction implicit (ADI) methods. The factorization
process is by no means trivial, since it can destabilize the numerical scheme, as
will be shown for the three-dimensional convection equation with central
differenced space derivatives.

Finally, the classical Runge-Kutta methods will be summarized, since they
appear to be well adapted to convection problems with central discretizations.
We refer the reader to the literature for more details and general presentations,
in particular, Gear (1971), Lambert (1973), Dahlquist and Bjorck (1974) and
Beam and Warming (1982).

11.1 LINEAR MULTI-STEP METHODS

For a general system of ordinary differential equations such as equation
(10.1.2) the right-hand side may, and often will, be non-linear. The general
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multi-step time integration will therefore be written for a system of the form

dU
di=H(U,t) (11.1.1)

where His a non-linear function or matrix operator, acting on the vector U, as
defined previously. The vector H( U, t) represents the space-discretized
operators (SU + Q), equation (10.1.2), or can be considered as the differential
space operator prior to discretization (see Section 11.2).

The general linear K-step integration method, already introduced in section
10.1, is defined by

K K
L:; ak Un+k = At L:; (3kHn+k (11.1.2)

k=O k=O

where
Hn+k = H( Un+k, tn+k) (11.1.3)

The consistency conditions are obtained from the requirement that a constant
U should be a solution of the homogeneous system, and that the first terms of
a Taylor expansion should be consistent with equation (11.1.1) when At tends
to zero. Hence

K
L:; ak = 0 (11.1.4)

k=O

K K
L:; kak = L:; {3k = 1 (11.1.5)

k=O k=O

the common value of the sums in equation (11.1.5) being set arbitrarily equal
to one.

The stability is analysed by the following steps, following the developments
of Chapter 10:

(1) Introduce the homogeneous part of the linear modal equation (10.1.21),
written here as

dUdi = au (11.1.6)

(2) Form the characteristic polynomial (equation (10.1.40»:

PI (z) = L:; akzk - (0 At) L:; (3kzk (11.1.7)
k k

(3) The roots of PI (z) = 0 should lie within the circle of radius 1 and the roots
on the unit circle have to be simple.

It is customary to introduce two generating polynomials in the time shift
operator E, p(E) and (J(E), which define completely the multi-step integration
method, by

K K
p(E) = L:; akEk (J(E) = L:; {3kEk (11.1.8)

k=O k=O
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so that equation (11.1.3) can be written as

p(E) Un = dtu(E)Hn (11.1.9)

The characteristic polynomial PI (z) becomes

PI(z) = p(z) - {} dtu(Z) = 0 (11.1.10)

In practical applications the vector U contains a large number of variables,
namely N = m . M; M is the total number of mesh points where the m-
independent variables have to be determined. Generally, these variables have
to be stored for each time level, and increasing the number of time levels could
rapidly put severe restrictions on the allowable space variables and mesh
points. It is therefore very exceptional to consider applications with more than
three time levels (two-step methods) to fluid mechanical problems, the
overwhelming majority of schemes being limited to one-step methods with two

time levels.
Following Beam and Warming (1980) we introduce the most general

consistent two-step method under the form
(1 + t)Un+2 - (1 + 2t)Un+1 + tUn = dt[OHn+2 + (1 - 0 - cP)H"+I - cPH"]

(11.1.11)
The generating polynomials are

p(E) = (1 + t)E2 - (1 + 2t)E + t (11.1.12)

u(E)=OE2+(1-0+cP)E-cP (11.1.13)

For second-order accuracy in time we should have the relation

cP=t-O+1/2 (11.1.14)

and if, in addition,
t=20-5/6 (11.1.15)

the method is third-order accurate. Finally a unique fourth-order accurate

method is obtained for

O=-cP=-t/3=1/6 (11.1.16)

This is easily shown from a Taylor series expansion (see Problem 11.1).
For t = cp = 0 we obtain a two-level, one-step scheme which is better known

as the generalized trapezoidal method, replacing (n + 1) by n:

Un+l - Un = dt[OH"+I + (1- O)Hn] (11.1.1?)

with
p(E)=E-l (11.1.1S)

u(E)=OE+I-0 (11.1.19)

For 0 = 1/2 the method is second order in time and is known as the trapezium
formula or the Cran1k-Nic1olson method when applied to the diffusion
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Table 11.1. Partial list of one- and two-step methods (from Beam and Warming, 1982)

(J ~ It> Method Order

0 0 0 Euler explicit I A-stable
I 0 0 Backward Euler I A-stable

1/2 0 0 One-step trapezoidal 2 A-stable
I 1/2 0 Backward differenciation 2 A-stable

3/4 0 - 1/4 Adams type 2 A-stable
1/3 - 1/2 - 1/3 Lees type 2 A-stable
1/2 - 1/2 - 1/2 Two-step trapezoidal 2 A-stable
5/9 -1/6 -2/9 A-contractive 2
0 - 1/2 0 Leapfrog 2
0 0 1/2 Adams-Bashforth 2
0 - 5/6 -1/3 Most accurate explicit 3

(unstable)
1/3 - 1/6 0 Third-order implicit 3
5/12 0 1/12 Adams-Moulton 3
1/6 -1/2 - 1/6 Milne 4

equation

Un+l - Un = T (Hn+l + Hn) (11.1.20)

A classification of several well-known methods are listed in Table 11.1. Note
that the schemes with 0 = 0 are explicit.

A certain number of properties have been proven by Dahlquist (1963) with
regard to the order of accuracy of A-stable methods:

(1) The two-step scheme (11.1.11) is A-stable if and only if

0 ~ <fJ + 1/2

~ ~ -1/2 (11.1.21)
~ ~ 0 + <fJ - 1/2

This is shown in Figure 11.1.1, for the family of second-order schemes,
satisfying equation (11.1.14).

(2) An A-stable linear multi-step method cannot have an order of accuracy
higher than two.

(3) The trapezoidal scheme (equation (11.1.20» has the smallest truncation
error of all second-order A-stable methods.

A particular family of schemes, extensively applied, is that with <fJ = O.
The schemes are often written in incremental form for the unknowns
~Un = Un+l - Un, as follows with a shift in the time index n:

(1 + ~)Un+l - (1 + 2~)Un = dt [OHn+l + (1- O)Hn] - ~Un-l (11.1.22)

or
(1 + ~)d Un - ~ d Un-l = ~t[OHn+ 1 + (1 - O)Hn] (11.1.23)
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2 (=28=1 Region of
~ A-stability
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8
0

1 2 3

8=-1/2
-1

Figure 11.1.1 Domain of A-stability in the plane (~. 8) for
second-order two-step methods

They are second-order accurate in time for ~ = (J - 1/2. When applied to the
Euler and Navier-Stokes equations with central space differencing these
schemes have become known as the Beam and Warming schemes, when the
linearization of Section 11.3 is introduced. The characteristic polynomial can
be written as

PI (z) = (1 + ~)Z2 - (1 + 2~)z + ~ - (0 ~t)z«(Jz + 1 - (J) = 0 (11.1.24)

For the two-level schemes (11.1.17) with ~ = 0, one root is the trivial root Z = 0
and the other is

z=I+I(~~~t~t (11.1.25)

For fixed values of (J the stability domains in the O-plane are obtained from the
condition I z I ~ 1. The stability curves displayed in Figure 11.1.2 are obtained

Re(.rl.l./J
-4

Figure 11.1.2 Stability regions for the two-step schemes (11.1.22)
with ~ = 0
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following the procedure described in Chapter 10. For 0 = 0 we recover the
explicit Euler scheme and for 0 = 1 the implicit Euler scheme. The stability

regions are inside the curves at the left (0 < 1/2) and outside the curves at the
right (0 > 1/2). For 0 = 1/2 the line coincides with the imaginary axis and the
stability region is the left half plane. This confirms that scheme (11.1.22) is
A-stable for 0 ~ 1/2.

We can also deduce from Figure 11.1.2 that the generalized trapezoidal
scheme (equation (11.1.17» is conditionally stable for 0 ~ 0 < 1/2 when the
eigenvalue spectrum 0 is on the real negative axis. The stability condition
I z I ~ I becomes with equation (11.1.25)

2
--~(Odt)~O forO<I/2 (11.1.26)

1-20

Hence for the diffusion equation, with central space differencing, the scheme is
implicit for 0 ~ 0, but only conditionally stable. It is therefore of very little use
unless 0 ~ 1/2, where it becomes unconditionally stable. On the other hand,
for the convection equation and central space differencing the eigenvalues are
on the imaginary axis; the scheme will therefore be unstable for 0 < 1/2 and
unconditionally stable for 0 ~ 1/2.

Example J J. J. J Cran4k-Niclolson scheme

Consider the diffusion equation Ut = auxx with the central difference scheme of
Table 8.1. Equation (11.1.20) becomes for a single component Uj of U:

n+ 1 n a dt ( n+ 1 2 n+ 1 n+ I) a dt ( n 2 n n )Uj - Uj =U? Uj+1 - Uj + Uj-1 +U7 Uj+l- Uj +(~~1~1.1)

The eigenvalues of the space operators have been determined in Chapter 10 for
different boundary conditions, and have been shown to be real and negative.

The characteristic root is obtained from equation (11.1.24) as

PI(Z) = Z - 1 -}(O dt)(Z + 1) = 0 (Ell.l.2)

= 1 + (0 dt)/2 (Ell.l.3)
Z 1 - (0 dt)/2

or

z-1
Odt=2- (Ell.l.4)

z+1

The analysis of the amplification z for very large time steps, dt -+ CX>, shows
that z tends to - 1. Hence the solution Ujn will tend to have an asymptotic
behaviour of the form Ujn := (- 1 r . UjO, which represents an oscillatory decay.
This can generate oscillations of the numerical solution. The stability condi-
tion, I z I ~ 1, is satisfied for all 0 dt in the left half plane, including the
imaginary axis. The method is therefore A-stable and scheme (Ell. 1. 1) is
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unconditionally stable. Note that for imaginary eigenvalues 0, I z I = 1 and the
scheme is neutrally stable.

Example 11.1.2 Beam and Warming schemes for the convection equation

For the central second-order space discretization of Ut + aux = 0, scheme
(11.1.22) becomes

(1 + 'f.) ~Ujn - 'f. ~Ujn-l = -~ [(J(Uj~+11 - Uj~+II) + (1 - (J)(U7+1 - U7-1)]

(EII.I.5)
= -~ [(J(~U7+1- ~U7-1) + U7+1- U7-1]

The tridiagonal system for ~Ujn becomes

(1 + 'f.)~Ujn - (J ~ ~U7-1 + (J~ ~U7+1 = -~ (U7+1- U7-1) + 'f. ~Ujn-l

(EII.I.6)

From a Von Neumann analysis the amplification matrix is readily obtained as

[1 + 'f. + (J ~ (e1.p - e-1.p)] (0 - 1) = - ~ (el.p - e-1.p) + 'f.( 1 -~) (EIl.l.7)

The three-level scheme leads to a quadratic form for 0, with two solutions,
corresponding to the two roots of the characteristic polynomial.

Since the method is A-stable the trapezoidal scheme, applied to the centrally
discretized convection equation, will also be stable, since its eigenvalues are on
the imaginary axis (see also Problems 11.3 and 11.4). For the two-level
schemes 'f. = 0 we obtain

0=1- Iusin~ (EIl.l.8)
1 + Iu£J sm cf>

leading to an amplitude

1012= 1 +u2«(J-I~2sin2cf> (EII.1.9)
1 + U2(J2 sm2cf>

and a phase error

1 -1 ( u sin cf> )e.p=~tan I+u2(J«(J-I)sin2cf> (EII.I.IO)

Observe that all the schemes have 0 = 1 at cf> = 11", indicating a lack of

dissipation of the high-frequency errors.
These curves are plotted in Figure 11.1.3 for two different schemes at

different values of the Courant number. Note that they all have a large lagging
phase error. The trapezium formula, (J = 1/2, leads to I 0 I = 1 for all cf> and is

therefore not well suited for purely convective problems, that is, to problems
without any dissipation.
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Figure 11.1.3 Polar plots of amplification factors and phase errors for different implicit Beam
and Warming algorithms (EII.I.6). (a) Amplitude error for 8 = I, ~ = 1/2 backward differentation
scheme; (b) phase error for 8 = I, ~ = 1/2 backward differentiation scheme; (c) amplitude error for
8 = I, ~ = 0 backward Euler (implicit) scheme; (d) phase error for 8 = I, ~ = 0 backward Euler

(implicit) scheme

11.2 PREDICTOR-CORRECTOR SCHEMES

When applied to linear three-point schemes as in the previous examples,
implicit two-step methods lead to a tridiagonal system which is easy to solve
(see Section 12.1). However, an additional difficulty arises when H( U) is
non-linear in U and it is necessary to define either a linearization or an iterative
procedure.

Considering scheme (11.1.22). Hn+t = H(Un+l) has to be evaluated
numerically in some way, since Un + I is unknown. We can consider an iterative

approach, whereby a first guess Un+1 of Un+1 is obtained (for instance, by
applying an explicit scheme), called a predictor-step. Then equation (11.1.22)
can be written as

(1 + ~)Un+1 - (1 + 2~)Un = ~t [8J:iii+1 + (1 - 8)Hn] - ~Un-1 (11.2.1)

and solved for Un+1 = Un+l. This step is called a corrector step. defining
what is called a predictor-corrector sequence, with ~ = H(Un+ I).

This approach can be pursued at the same time level by repeating equation
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(11.2.1) for s st~s, until some form of convergence between two consecutive
estimations of [In+ I is achieved. This implies an evaluation of H at each

'local' iteration step and this procedure is generally not recommended, since
the evaluation of H is often the most costly operation in the numerical
simulation. Repeating the corrector sequence implies that the solution of
equation (11.2.1) is designated by {In+l and that the second corrector step is

A =
(1 +'f.)Un+I_(l +2'f.)Un=.1.t[8Hn+l+(1-8)Hn] _'f.Un-1 (11.2.2)

where (In+1 is the new value for Un+1 and W+T= H(Un+I).
A detailed discussion of various options and of the influence of the number

of 'local' iterations can be found in Lambert (1974). One of the essential
conclusions, from a comparison of the effect of different numbers of corrector
steps coupled to the same predictor, is that the unique sequence of a predictor
step followed by a single corrector step appears as being optimal in view of the
reduction of the number of evaluations of the right-hand side.

In order to analyse the order of accuracy and -!he stability of a predictor
corrector sequence we can combine the predictor Un and the known value Un
in a single vector and write the sequence as a system of two equations. The
characteristic polynomial is obtained by setting the determinant of the matrix
to zero for the modal equation H = au. Let us illustrate this for the two-step
scheme (11.1.22). By definition, we require the predictor to be explicit, hence
we set 8 = 'f. = 0 and obtain the first-order Euler method as predictor:

if+I = Un + .1.tHn (11.2.3)

The corrector is equation (11.2.1), written in operator form as

[(I +'f.)E-(1 +2'f.)]Un=.1.t[8j{n+I+(1-8)Hn] _'f.Un-l (11.2.4)

and can be treated as an explicit equation.
Inserting the modal equation H = 0 U we obtain the system

I E - (I + O.1.t) 1
1 un I 1 0

I-80.1.tE 'f.E-l+(I+'f.)E-(1+2'f.)-0.1.t(I-8)1 un = 0 (11.2.5)

leading to the polynomial equation obtained from the determinant of the
system set to zero:

PI (z) = (1 + 'f.)Z2 - (I + 2'f.)z + ~ - (0 .1.t)(1 + 0.1.t8)z = 0 (11.2.6)

It is interesting to compare this equation with equation (11.1.25) derived for
the implicit system, particularly when 'f. = O. The above equation becomes,
removing a trivial root Z = 0,

z = I + (0 .1.t) + (0 .1.t)28 (11.2.7)

Solution (11.2.7) is typical of explicit schemes, and the predictor-corrector
sequence has become explicit for all values of 8. The sequence is only first
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order accurate in time, except or 0 = 1/2, where it is second order, since the
quadratic term is equal to the corresponding term in the Taylor development
of exp(O dt), as seen from equation (10.1.44). From the condition I z I ~ 1 we
obtain the stability limit for real eigenvalues 0:

10 ~ 0 dt ~ -"8 (11.2.8)

The scheme is conditionally stable, with condition (11.2.8). If 0 is purely
imaginary (for instance, for the convection equation with central space
differencing) the predictor-corrector scheme is conditionally stable, since we
obtain for 0 = IUJ the condition

2 20-1
(UJ dt) ~ 82 (11.2.9)

The choice 0 = 1/2 corresponds to a second-order accurate sequence and is

known as Henn's method (Dahlquist and Bjorck, 1974). It forms the basis of
the McCormack scheme and can be written as

ljii+T = Un + dtHn
un+l=un+!dt(:Hii+l+Hn) (11.2.10)

This scheme is unstable for the convection equation, when central. differences
are applied, since equation (11.2.9) cannot be satisfied for 0 = 1/2. On the
other hand, for 0 = 1 we obtain the following scheme:

ljii+T = Un + dtHn
Un+l U n -H n+l (11.2.11)

= +dt

which is stable for the convection equation with central differences under
the condition I UJ dt I < 1. Variants of this scheme have been applied
by Brailowskaya (1965) to the Navier-Stokes equations by keeping the
viscous diffusion terms in the corrector step at level n. In particular, for
the linear convection equation, equation (11.2.11) becomes, with
Hi= -a(ui+J-Ui-J)/2dX,

-;;-:j:"1 n (1 ( n n )Uj =Uj -2: Ui+J-Ui-1

(11.2.12)
(1--

ur+J = Uin - 2: (Ui~+JJ - Uj~+IJ)

Combining the two steps leads to a scheme of second-order accuracy in space
and first order in time, which involves points i - 2 and i + 2 and is stable under
the CFL condition (see Problem 11.9).

When an upwind differencing is applied to the convection terms, then,
according to equation (10.2.37), the eigenvalues are real and negative, and
Henn's method, equation (11.2.10), is stable with the condition defined by
equation (11.2.8) when the same space discretization is applied on the
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predictor and the corrector. This would lead to a necessary condition:

a olt
0 < (J=- ~ 2 (11.2.13)

olx

which is twice the standard CFL limit of one.
Henn's method with the upwind differencing takes the following form for

the linear convection equation:

-n-+T n ( n n )Uj = Uj - (J Uj - Uj-l

(11.2.14)(J--Ujn+ 1 = Ujn - - (Ujn+ 1 - Uj~+( + Ujn - U7-1)
2

or
2

Ujn+l = Ujn - (J(Ujn - U7-1) +~ (Ujn - 2u7-1 + U7-2) (11.2.15)
2

Compared with the only second-order accurate scheme, equation (9.3.13), this
scheme differs by the coefficient in front of the last term. Therefore this
scheme is only first-order accurate. A Von Neumann analysis shows, in
addition, that the stability condition (11.2.13) is not sufficient, since the Von
Neumann analysis leads to the CFL condition 0 < (J ~ 1 (see Problem 11.10).
Note that a similar situation has already been discussed in Section 10.4 in
relation to the stability conditions of the explicit upwind scheme (equation
(10.3.13».

If scheme (11.2.11) is applied with upwind differences we obtain, instead of
equation (11.2.15), the algorithm

Ujn+l = Ujn - (J(Ujn - U7-1) + (J2(Ujn - 2u7-1 + U7-2) (11.2.16)

In this case a necessary stability condition derived from equation (11.2.8) is
0 < (J ~ 1, where the Von Neumann method gives the restriction 0 < (J ~ 1/2
(see Problem 11.11).

McCormack's scheme

In order to obtain a second-order accurate scheme with Henn's predictor-cor-
rector sequence and a first-order space differencing for Hn we could attempt to
compensate the truncation errors in the combined sequence by applying a
different space operator in the corrector step.

Considering scheme (11.2.10), and a space truncation error ap+ 1 olxP in the
predictor to the lowest order p, we could obtain a higher global accuracy for
the corrector step if the corrector would generate an equal, but opposite in
sign, truncation error. That is, we would have

Un+T = Un + oltHn + olt olxP ap+ 1 + olt olxP+ 1 Op+2 (11.2.17a)
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and
Un+l T= Un +! .1.t[ffl+T + Hn + .1.xP ap+ 1+ ap+2 .1.xP+ I

(11.2.17b)- p - p+1
+ ap+ I.1.X + ap+2 .1.x ]

where HI is different space operator from H. If ~ = - ap+ I the overall

accuracy is increased by one unit, and becomes of order (p + 1). For the
convection equation this would be realized if the corrector steps would contain
a forward space difference, when the predictor contains a backward
difference, or vice-versa.

This leads to the second-order accurate (in space and in time) McCormack
scheme, which is widely applied for resolution of Euler and Navier-Stokes
equations (McCormack, 1969, 1971):

n+1 n ( n n )Uj = Uj - (1 Uj - U j- I

(11;2.18)
(1--u,"+ 1= Ujn -:2 (u,"++( - u,"+ 1+ Ujn - u7-1)

Since the unique second-order scheme for the linear wave equation is the
Lax-Wendroff scheme, they should be identical (see Problem 11.12). How-
ever, this is no longer the case for non-linear problems, and we refer the reader
to Volume 2 for applications of this scheme to the system of Euler and
Navier-Stokes equations. Many other variants can be derived if we allow for
the freedom of different space operators in the two steps of the predictor-cor-
rector sequence.

11.3 LINEARIZATION METHODS FOR NON-LINEAR IMPLICIT
SCHEMES

Another approach to the treatment of the non-linearity, which has the advan-
tage of maintaining the fully implicit character of the schemes (when (J ~ 0), is
obtained from a local linearization of the non-linear terms. A Newton method
is defined, based on

Hn+ I = H( Un+ I) = Hn + .1.H + O(.1.f)

= Hn + (¥6) . (Un+1 - Un) + 0(.1.(2) (11.3.1)

where (oH/oU) is the Jacobian of the operator H with respect to the
dependent variable U. Writing

oH
J(U)=W (11.3.2)

we have, up to order (.1.t2),

Hn+1 = Hn + J(Un). .1.Un (11.3.3)
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Scheme (11.1.23) becomes

[(1+~)-8.1tJ(Un)] .1Un=.1tHn+~.1un-1 (11.3.4)

This formulation is known as the Beam and Warming scheme (1976,1978) and
is often called the .1-form (delta-form), although the first application of local
linearization to flow problems was developed by Briley and McDonald (1975).

Example 11.3.1 Burger's equation au/at + a(u2/2)/ax= 0

Applying a central difference to the space operator leads to

Hj= -~ ( ~-~ ) =2(E-E-I)~ (E11.3.1)

2.1x 2 2 2.1x 2

The Jacobian matrix J is obtained from

Hl'+I-Hl'= -2h(E-E-I) [(¥)n+l- (¥)n] (E11.3.2)

as

J(Uj)=--
2 1 (E-E-1)ul".1uin (E11.3.3)

.1x

leading to the scheme, with .1ul' = ul'+ 1 - ul', from equation (11.3.4)

(1 1:) A n 8.1t n A n 8.1t n n+ '" ...Uj + _2 Uj+1 ",Ui+1 -- 2 Uj-l.1i-1
.1x .1x

= -~ [(~)2- (~)1 +~.1Uin-1 (E11.3.4)

Application to the differential form

The whole development of this section did not specify the particular form of
the right-hand side quantity H of equation (11.1.1). We have assumed here
that it was already in space-discretized form in order to be able to establish the
stability conditions. However, for the purpose of the scheme definition
(11.3.4) we could consider that H is expressed as a function of the differential
operators, and that a time integration is performed first, prior to the space
discretization. Hence for the general equation in one dimension:

au of-at + ax = 0 (11.3.5)

where f is the flux function. We can write, with H = - (of/ax) = - fx

f:+I-f~=~(r+l-r)=~ [!!1 (Un+l- un)] +0(.1t2)ax ax au
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or

1:+1-/~=fx [A(U)AU] +O(Ar) (11.3.6)

where the Jacobian A of the flux function has been introduced:

al
A(U)=W (11.3.7)

Scheme (11.3.4) becomes, to order Ar,

[(I+~)+()At.fxA(U)] Aun=-At~+~AUn-1 (11.3.8)

written prior to the space discretization. This is the standard A-form of the
Beam and Warming schemes. For Burger's equation, 1= u2/2 and A(u) = u;
with a central difference for the space derivative we obtain exactly equation
(EII.3.4).

All the above time-integration schemes can be written as a function of the
differential operators, that is, prior to the space discretization by replacing I
by (ai/ax). For instance, McCormack's scheme, equation (11.2.18), becomes,
for a general flux I,

Uf+T = Uin - ~ (fin - 17- 1 )

(11.3.9)
n+l n At (-I n + 1 ~ j'n /'OJ

)Ui =Ui-lli i+I-Ji +Ji-Ji-1

11.4 IMPLICIT SCHEMES FOR MULTI-DIMENSIONAL PROBLEMS:
ALTERNATING DIRECTION IMPLICIT (ADI) METHODS

When the implicit schemes of form (11.1.11) are applied to multi-dimensional
problems the resulting implicit matrix system is no longer tridiagonal, as it
occurs for three-point discretizations on one-dimensional equations. For
instance, the two-dimensional parabolic diffusion equation, with constant
diffusion coefficient a,

ut=a(uxx+uyy) (11.4.1)

discretized with a five-point finite difference Laplace scheme, leads to the
system (Ax = Ay):

duij a-d =~ (Ui+l.j+ Ui-l,j+ Ui,j+1 + Ui,j-I-4uij) (11.4.2)
t Ax

With a backward Euler scheme, for instance, we obtain a pentadiagonal
matrix system:

n+1 II aAt ( n+1 11+1 11+1 11+1 4 11+1 ) (1143)Uij - Uij= -z Ui+l,j+ Ui-I,j+ Ui,j-1 + Ui,j+l- Uij . .
Ax
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On an arbitrary mesh, with higher-order discretizations or with finite elements,
additional mesh points appear in the Laplace discretization at point i, j, and
the implicit matrix will have a more complicated structure than the pent-
adiagonal one.

The principle of the Am method is to separate the operators into one-
dimensional components and split the scheme into two (or three, for three-
dimensional problems) steps, each one involving only the implicit operations
originating from a single co-ordinate. This method has been introduced by
Peaceman and Rachford (1955) and Douglas and Rachford (1956) and
generalized by Douglas and Gunn (1964). Many developments and extensions
have been brought to this approach by Russian authors and given different
names, i.e. fractiOllal step method by Yanenko (1971) or splitting method by
Marchuk (1975). An excellent description of Am methods can be found in
Mitchell (1969) and Mitchell and Griffiths (1980).

If the matrix operator S on the right-hand side of

dU
d(= SU+ Q (11.4.4)

is separated into submatrices acting on the U components in a single direction,
that is S = Sx + Sy + S" each operator in the right-hand side acting on the
variable indicated as subscript, then equation (11.4.4) becomes

dUd( = (Sx + Sy + S,)U + Q (11.4.5)

In equation (11.4.2) Sx and Sy represent the second-order derivatives in the x-
and y-direction, respectively, with the shift operators Ex and Ey:

SxU= ~ (Ex- 2 + E;I)U (11.4.6)

SyU=-fyz (Ey - 2 + E;;I)U (11.4.7)

or explicitly:

a
SXUij=~(Ui+I,j-2uij+Ui-I,j) (11.4.8)

a
SYUij=~ (Ui,j+I-2uij+ Ui,j-l) (11.4.9)

With the implicit scheme (11.1.22) and, for instance, ~ = 0,8 = 1, defining the
first order in time, backward Euler method, we obtain

Un+l- Un = ,1,/(Sx+ Sy + S,)Un+1 + Q ,1,/ (11.4.10)

The implicit operators appear from
[1 - ,1,/(Sx + Sy + S,)] Un+ I = Q ,1,/ + Un (11.4.11)
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The basic idea behind the ADI method consists of a factorization of the
right-hand side operator in a product of one-dimensional operators. Equation
(11.4.11) is replaced by

(1- T dtSx)(1 - T dtSy)(l - T dS,)Un+ 1= T dtQ + Un (11.4.12)

where T is a free parameter. Developing equation (11.4.12) leads to

Un+1 - Un = T dt(Sx + Sy + S,)Un+1 + T dtQ

+ T2dr(SxSy + SyS,+ S,Sx) Un + T3dt3SXSyS,Un (11.4.13)

to be compared with equation (11.4.10).
The factorization (11.4.12) has introduced two additional terms which

represent errors with respect to the original scheme to be solved. however,
these are higher-order errors, proportional to dt2 and dt3, and since the
backward Euler scheme is first order in time these error terms are of the same
order as the trunctation error and do not affect the overall accuracy of the
scheme.

The parameter T appears as a relaxation parameter and has to be taken equal
to one if this scheme is to be used for time-dependent simulations. However,
the ADI technique is mostly of application for stationary problems, whereby
we attempt to reach the convergence limit as quickly as possible. In this
connection the relaxation parameter T can be chosen to accelerate this
convergence process, since T dt represents a scaling of the time step (see
Chapter 12 for more details).

The factorized scheme is then solved in three steps:

(1 - T dtSx)""iJii+T = [1 + T dt(Sy + S,)] Un + T dtQ

(1 - T dtSy)""iJii+T =""iJii+T - T dtSyUn (11.4.14)

(1 - T dtS,)Un+ 1= -u-n-+I - T dtS,Un

Introdu~ the variations dUn = Un+ 1 - Un, Wn =""iJii+T - Un and

Wn = ~ - Un the ADI scheme can be rewritten as

(1 - T dtSx)Wn = T dt(SUn + Q)

(l-TdtSy)wn=wn (11.4.15)
(1 - T dtS,)dUn = Wn

This is sometimes called the d-formulation.
By recombining the factors the AD I approximation can be redefined by the

formulation

(1 - T dtSx)(1 - T dtSy)(1 - T dtS,)dUn = T dt(SUn + Q) (11.4.16)

For T = 1 we obtain the Douglas-Rachford scheme.
The splitting or fractional step method leads to another ADI formulation,

based on a factorization of the Cran~k-Nic~olson scheme (equation
(11.1.20», and is therefore second ordet in time. Equation (11.4.10) is
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replaced by

Un+1 + UnUn+1 - Un = ~t(Sx + Sy + Sz) 2 + ~tQ (11.4.17)

or

[1 - T (Sx + Sy + Sz)] Un+ 1 = [1 + T (Sx + Sy + Sz)] Un + ~tQ

(11.4.18)
This equation is factorized as follows:

( 1 - T Sx) (1 - T Sy) (1 - T Sz) Un+ I

= (1 + T Sx) (1 + T Sy) (1 + T Sz) Un + ~tQ (11.4.19)

and represents an approximation to equation (11.4.17) of second-order
accuracy, since equation (11.4.19) is equal to

[ 1 - T (Sx + Sy + Sz)] Un+ 1 = [1 + T (Sx + Sy + Sz)] Un + ~tQ

+ ~ (SxSy + SySz + SxSz) ( Un+ 1 - Un) + ~ SxSySz( Un+ 1 + Un) (11.4.20)

Since (Un+1 - Un) is of order ~t, the error terms are 0(~t3). Equation
(11.4.19) is then solved as a succession of one-dimensional Cranck-Nicholson
schemes:

( 1 - ¥ Sx) "U"ii+1 = (1 + T Sx) Un + ~tQ

(1- T Sy )~= (1 +T Sy)Uii"+"i (11.4.21)

(1-T Sz)un+1 = (1 +T Sz)~

When the Si commute, we recover equation (11.4.19) by elimination of'ljill
and lj"+T. If the Si operators do not commute, approximation (11.4.21) is still
valid, but is reduced to first order in time.

11.4.1 Two-dimensional diffusion equation

Considering equation (11.4.1), with the central space discretizations, we can
write the factorized ADI scheme, equation (11.4.14), as

(1 - T ~tSx)"U"ii+1 = (1 + T ~tSy)Un
I -

I (11.4.22)(1 - T ~tSy)Un+ = Un+ - T ~tSyUn
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Written out explicitly, we obtain the following tridiagonal systems, with
~x = Ay and {3 = a At/ ~X2:

-;;-+l {3(-n-.iT 2-;;-+"T -n-.iT ) n {3( n 2 n + n )U/j -7 Uj+l,)- U/j +Uj-l,) =UIj+7 Uj,)+l- U/j Uj,)-l

n + 1 (3( n + 1 2 n + 1 n + 1) -n"+""i (3( n 2 n + n )U/j - 7 Uj,)+l - U/j + Uj,)-l = U/j - 7 Uj,)+l - U/j Uj,)-l

(11.4,23)

The first equation is solved as a tridiagonal system along all the horizontal
i-lines, sweeping the mesh from j = 1 to i = jmax. After this first step, the
intermediate solution U"7;+T is obtained at all mesh points. The second equation
represents a succession of tridiagonal systems along the i-columns and the
solution uij + 1 is obtained after having swept through the mesh along the
vertical lines, from i = 1 to i = imax.

A Von Neumann stability analysis can be performed for this system by
defining an intermediate amplification factor, G, by

"Uii+"I = G Un (11.4.24)

For the first step, with I/>x and I/>y being the Fourier variables in the x- and
y-directions, respectively, we have

G = 1 - 47{3 sin 21/>y/2 (11.4.25)

1 + 47{3 sin 21/>x/2

G = G + 47{3 sin 21/>y/2 (11.4.26)

1 + 47{3 sin2l/>y/2

and by combining these two equations:

G = ,. ,1.+ J~~~~~ s!~,~~x~2 ~ ~~n:,~l~ "" (11.4.27)
(1 + 47{3 sin 2I/>x/2) (I + 47{3 sin l/>y/2)

The scheme is clearly unconditionally stable since I G I ~ 1. A similar calcula-
tion for three dimensions confirms this property,

Another version of the ADI technique is the Peaceman-Rachford method,
based on the following formulation, with 7 = 1/2 in two dimensions:

( 1 - TSx) un+r = ( 1 + T Sy) Un

(11.4.28)
( 1 - T Sy) Un+ 1 = (1 + T Sx)""ljii+1

We leave it to the reader to show that this scheme is also unconditionally stable
for the diffusion equation.

In addition, this form of the ADI method is second-order accurate in time,
as can be seen by eliminating the intermediate solution "Uii+"I. We obtain

Un+ 1 un At2
Un + 1 - Un = At(Sx + Sy) 2~ + 4 SxSy( un + 1 - U") (11.4.29)
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and since (Un+ I =-yn) is of order ~t, the last term is 0(~t3). The intermediate

values Wand AU have not necessarily a physical meaning, and boundary
conditions have to be defined for these variables in accordance with the
physical boundary conditions of Un.

Boundary conditions for the intermediate steps can be obtained from the
structure of system (11.4.15). In particular, for Dirichlet conditions we would
write for the boundary values ( )8:

W)B = (1 - T ~tSz)(un+1 - Un)B
- I (11.4.30)
~U)B = (1 - T ~tSy)(1 - T ~tSz)(Un+ - Un)B

More details can be found in Mitchell and Griffiths (1980).

11.4.2 Am method for the convection equation

Considering the three-dimensional convection equation

ut+aux+buy+cuz=O (11.4.31)

the operators Sx, Sy and Sz can be written, for a second-order central difference
of the space derivatives, as

a ~t (Jx~tSxUiJk= - UX(Ui+I,Jk-Ui-I,Jk)= -2(Ui+I,Jk-Ui-I,Jk)

b ~t (Jy~tSU" k = -- (u. .+lk -U. .- Ik) = -- (u. .+lk -U. .- Ik) ( 11432 )YU 2~y I,J, ',J, 2 ',J, I,J, ..

c~t (Jz~tSzUijk = - ~ (Uij,k+l- Uij,k-I) = -"2 (Uij,k+1 - UiJ,k-I)

Considering first the two-dimensional case, the ADI scheme (equation
(11.4.14» can be written

-n-+T+ (Jx (n"iT n"iT ) n (Jy ( n n
)uij T2 Ui+I,J-Ui-I,J =Uij-T2 Ui,J+I-Ui,J-I

(11.4.33)
n + I (Jy ( n + I n + 1 ) n+T (Jy ( n n

)UiJ +T2 Ui,J+I-Ui,J-I =Ui,J +T2 Ui,J+I-Ui,J-I

The amplification factors are given by

G = 1 - IT(Jy s~n cpy (11.4.34)

1 + IT(Jx Sin CPx

G = G + IT(Jy sin cpy = 1 - T2(Jxf1y sin CPx sin Cpy (11 4 35)
1 + IT(Jy sin cpy (1 + IT(Jx sin CPx)(1 + IT(Jy sin CPy) . .
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Since G is of the form

G = 1 - T2(JotUy sin cf>x sin cf>y (11 4 36)
1 - T2(Jx(Jy sin cf>x sin cf>y + IT«(Jx sin cf>x + (Jy sin cf>y) . .

we have I G 12 ~ 1, and the scheme is unconditionally stable.
However, in three dimensions this is no longer the case. The ADI scheme

applied to the three-dimensional convection equation, centrally discretized
(without dissipation contributions) is unconditionally unstable, as shown by
Abarbanel et al. (1982).

In three dimensions the above procedure leads to the following amplification
matrix, writing Sx for (Jx sin cf>x and similarly for the y and z components:

G = 1 - T2(SXSy + SzSx + SySz) - IT3sxsySZ (11.4.37)

. (1 + ITsx)(1 + ITsy)(1 + ITsz)

It can be shown that there are always values of Sx, Sy, Sz such that 1 G I > 1. The
following proof is due to Saul Abarbanel and Eli Turkel (private commu-
nication).

The amplification matrix G is written as

G = at + I{3t (11.4.38)
at + I{32

and since tlie real parts are equal, stability is obtained if

l{3tl < 1{321 (11.4.39)
With

{32 = (3t + T(Sx + Sy + sz) = {3t + 'Y

the condition ! {3t ! ~ 1 {32! implies

({3t + 'Y)2 ~ (3T

or
'Y(2{3t + 'Y) ~ 0

If we select values of cf>x, cf>y, cf>z, such that 'Y > 0, assuming T > 0, the stability
condition (11.4.39) becomes

2T2SXSySZ ~ (sx + Sy + sz) = 'Y/T (11.4.40)

However, we can always find values for these variables which do not satisfy
this inequality. For instance, taking 'Y = £ through

Sx= -1/4, Sy= -1/4, sz=l+£ (11.4.41)

the above condition becomes

T2£ ~ - (1 + 2£)

16
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or

T2 ~ ~ (11.4.42)
1 +2£

We can always select a value of £ sufficiently small such that this condition is
never satisfied for any fixed finite value of T, since the right-hand side goes to
zero with £. For instance, for T= 1, £ < 1/141eads to an unstable scheme.

This instability is associated with low frequencies, since equation (11.4.41)
implies that Sx + Sy + Sz = £IT is a small quantity, and can only be satisfied by
small values of the wavenumbers <Px, <py, <Pz. In addition, it can be considered as
a weak instability since, from equation (11.4.38), for £ small:

I G 12 = 2 a~ + fJ~ 2 ~ 1 - --i~ (11.4.43)
al+(fJI+£) al+{11

where fJI is defined, in assumption (11.4.41), by

T3 (1 )fJI = -16 2 + £ < 0

and is a small negative quantity. Hence I G I is higher than one by an amount
proportional to £ and therefore the amplification of errors should remain
limited. This is confirmed by recent computations performed by Compton and
Whitesides (1983) with the full system of Euler equations. However, the
addition of adequate damping terms can remove the instability, as shown by
Abarbanel et al. (1982).

Actually, the three-dimensional fractional step method, equation (11.4.21),
is stable in three dimensions for the convection equation, although neutrally
stable since it is a product of one-dimensional Cranck-Nicholson schemes.

An essential difference between the fractional step method and the ADl
method in its form (11.4.15) is connected with their behaviour for stationary
problems. In this case convergence towards steady-state ~ Un = 0 is sought,
implying (SUn + Q) = 0, according to equation (11.4.16), when this limit is
reached. Hence the steady-state limit resulting from the computation will be
independent of the time step ~t, since S is a pure space discretization.
Equation (11.4.20), on the other hand, shows that it in the limit ~ Un -- 0, we
solve, with (Un+1 + Un)/2 ~ Un,

[1 - ~ (SxSy + SySZ + SxSz)] ~Un = ~t(SUn + Q) + ~ SxSySzU"

(11.4.44)

which produces a stationary solution with a vanishing right-hand side. That is,
the obtained stationary solution satisfies

SUn + Q= - ~ SxSySzU" (11.4.45)
4
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and is function of the time step. In addition, for large time steps, which is what
we aim at with implicit methods, the right-hand side might become unac-
ceptably high.

11.5 THE RUNGE-KUTTA SCHEMES

An important family of time-integration techniques whch are of a high order
of accuracy, explicit but non-linear, and limited to two time levels is provided
by Runge-Kutta methods. Compared with the linear multi-step method the
Runge-Kutta schemes achieve high orders of accuracy by sacrificing the
linearity of the method but maintaining the advantages of the one-step
method, while the former are basically of a linear nature but achieve great
accuracy by involving multiple time steps. A detailed description of the
Runge-Kutta method can be found in Gear (1971), Lambert (1974) and Van
der Houwen (1977). These methods have recently been applied to the solution
of Euler equations by Jameson et al. (1981) and further developed to highly
efficient operational codes (Jameson and Baker, 1983, 1984).

The basic idea of the Runge-Kutta methods is to evaluate the right-hand
side of the differential system (11.1.1) at several values of U in the interval
between n At and (n + l)At and to combine them in order to obtain a
high-order approximation of Un+l. The general form of a K-stage Run-
ge-Kutta method is as follows:

U(I) = Un

U(2) = Un + Ata2H(I)

U(3) = Un + Ata3H(2) (11.5.1)

U(K) = Un + AtaKH(K -I)

K
Un+ 1 = Un + At 2:; (3kH(k)

k=1

where, for consistency,
K
2:; {3k=l (11.5.2)

k=1

The notation H(k) implies

H(k) = H( U(k» (11.5.3)

written here for the case where H is explicitly independent of time, which is
generally the case in fluid mechanical problems. Note that equation (11.5.1) is
not the most general form of the Runge-Kutta schemes, since H(k) is only a

, function of U(k). In more general schemes, H(k) is a function of a linear

combination of all the U(III) with m ~ k. The most popular version is the
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fourth-order Runge-Kutta method, defined by the coefficients

~ _1 ~ _1 ~ _ 1~z - 2 ~3 - 2 ~4 -
1 1 1 (11.5.4)

fJl=6 fJZ=fJ3=3 fJ4=6

leading to

U(l) = Un

U(Z) = Un + l AtH(I)
(3) - n! (Z) (11.5.5)U - U + 2 AtH

U(4) = Un + AtH(3)

Un + I = Un + ~ (Hn + 2H(Z) + 2H(3) + H(4» (11.5.6)
6

where H(I) has been written as Hn.
A well-known two-stage Runge-Kutta method (Henn's method) is defined

by the predictor-corrector scheme of equation (11.2.10). With the restriction
to order two there exists an infinite number of two-stage Runge-Kutta
methods with order two but none with an order higher than two. They all can
be considered as predictor-corrector schemes.

Another popular, second-order scheme in this family is defined by

"Uii"+""i = Un + ~ Hn
2

(11.5.7)
Un+l = Un + At nn+'

Note that for each number of stages K there is an infinite number of possible
Runge-Kutta schemes, with maximum order of accuracy. An even larger
member of free parameters can be selected when the requirements on the urder
of accuracy are relaxed.

Stability analysis for the fourth-order Runge-Kutta method

In the linear case of the model problem H = 0 U, equation (11.5.5) becomes

U(Z) = (1 +! 0 At)Un

U(3) = [1 + l 0 At + !(O At)1 Un (ll.5.S)

U(4) = [1 + 0 At + l(O At)Z + !(O An 3] Un

and

Un+ I = [1 + 0 At + (¥+ ¥+ ~] Un = zUn (11.5.9)

where z is the root of the characteristic polynomial.
The stability region in the 0 A t plane is shown in Figure 11.5.1, together

with the stability regions for the second-order method (11.2.10) and the
third-order Runge-Kutta method, defined by az =!, a3 = ~,fJl = !, fJ2 = 0,
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ilm (fi6t)
p = 4 3i

Re (fi6t)
-3 -2

-/

/

-3i

Figure 11.5.1 Stability regions for Runge-Kutta methods of
orders 2, 3 and 4 in the O~t plane

(33 = i. Actually, all methods with K stages and order K have the same domain
of stability.

It is seen from equation (11.5.9) that the scheme is fourth-order accurate,
since z is the Taylor expansion of the exact amplification exp(O ~t) up to
fourth order. Observe that the fourth-order method contains the imaginary
axis up to a maximum value of 2J2. Therefore the fourth-order Runge-Kutta
integration scheme will be conditionally stable for central differenced convec-
tion equations, in contrast to the second-order method (11.2.10), which does
not include any portion of the imaginary axis. The limits on the real axis are
-2, -2.51, -2.78 for the second, third and fourth order, respectively
(Lambert, 1974). The first-order Runge-Kutta method is the Euler explicit
scheme.

For stationary problems it is important to be able to allow the greatest
possible time steps, and therefore the extension of the stability region is more
important than their order. By relaxing the order we can obtain Runge-Kutta
methods of a given stage number, with higher stability regions; for instance, a
third-order Runge-Kutta method with second-order accuracy can be defined
which cuts the real axis at (- 4.52, 0), Lambert (1974).
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Example 11.5.1 Diffusion equation Ut = axx with second-order central space

differences

If the system

duo a
-!.=~(Ui+I-2ui+Ui-l) (Ell.5.1)
dt Ax

is solved by a Runge-Kutta method whose stability domain cuts the real axis at
(- B, 0) then from equation (10.2.28), for Dirichlet conditions, the method
will be stable for

0 ~ ~ ~!!.
( Ell 5 2)~ Ax2 ~ 4 . .

For instance, for the fourth-order method the limit is 2.78/4, which is only
marginally larger than the single-step, first order Euler explicit method.

Example 11.5.2 Convection equation Ut + aux = 0 with second order central
space difference

The system

dui a
d/=-U;(Ui+I-Ui-l) (Ell.5.3)

solved by a fourth-order Runge-Kutta method has a stability range on the
imaginary axis limited to :t f2J2. Hence, with periodic boundary conditions
we have, from equation (10.2.40),

11 At = - fa sin I/> (Ell.5.4)

and the stability condition becomes

I a I < 2fi (Ell.5.5)

This scheme therefore allows a Courant number close to three times the usual
CFL limit of one.

However, for I/> = 11", that is, for high frequencies, 11 = 0 and the amplifi-
cation factor z becomes equal to one. Therefore it is to be expected that this
scheme will become unstable when applied to non-linear hyperbolic problems
with central differences if some dissipation is not added to the scheme
(Problems 11.18 and 11.19).

These two examples show that there is little to be gained in applying
high-order Runge-Kutta methods to pure diffusion problems with regard to
maximum allowable time steps when compared with the one-step explicit Euler
method. However, this is not the case for convection equations where
high-stage Runge-Kutta methods have an increasing segment of the imaginary
axis of the 11-plane in their stability region. The length of this segment
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(- 1.8, + 1.8) is increasing with the stage number K of the method. When the
order p is left as a parameter (not being necessarily equal to its maximum
value) the limit value .8 = K - I can be obtained for K odd and a certain
combination of coefficients, Van der Houwen (1977). For an even number of
stages (for instance, K = 4) Vichnevetsky (1983) has shown that the value
(K - 1) is also an upper limit, and a recent proof by Sonneveld and Van Leer
(1984) indicates that this limit can indeed be reached for first-order accurate
methods p = 1 and K ~ 2. Hence certain variants of the standard Run-
ge-Kutta method could increase the stability limit of equation (E11.5.5) to
\al ~ 3.

Other applications of the large number of degrees of freedom available in
the selection of the CXk and .8k coefficients of equation (11.5.1) can be directed
towards the selective damping of high-frequency error components, suitable
for integration into multi-grid iterative methods, Jameson and Baker (1983).
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PROBLEMS

Problem 11.1

Show that the trapezoidal scheme (11.1.17) is conditionally stable for 0 ~ 8 < 1/2 when
the eigenvalue spectrum {} is on the real negative axis as for the diffusion equation with
central differences. Proof equation (11.1.26) as well as the unconditional stability for
8> 1/2.

Define the stability conditions for convection equations when {} is purely imaginary.

Problem 11.2

Apply the techniques of Chapter 10, through Taylor series development, to the general
two-step time integration (11.1.11) and proof relations (11.1.14) and (11.1.15).

Problem 11.3

Apply the Cranck-Nicholson scheme (equation (Ell. 1. 1» and show its unconditional
stability by a Von Neumann analysis for a > O. Compare with formula (Ell.I.3) and
notice the relation with the amplification factor for the periodic eigenvalues (10.2.28).
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Derive also the equivalent differential equation. Draw a plot of the dissipation error

£D = GIG = G/e-ak2D.1 = G/e-I3~2

and compare with the dissipation errors (8.3.24) and (8.3.25) generated by the explicit
scheme.
Hint: Obtain the amplification factor, (:J = a ~tl ~X2:

0 = I - 2{3 sin21t>/2

I + 2{3 sin 21t>/2

and the equivalent equation

a~x2 (o4u) a~x4 ( I )(O6U)u/-auxx=12 a? +12 (32+3Q ~ +...

Observe the absence of phase errors.

Problem 11.4

Repeat problem 11.3 for the convection equation u/ + auK = 0 with a central difference
discretization and periodic boundary conditions. Calculate the amplitude and phase
errors as a function of It> and draw a polar plot of both quantities.
Hint: The scheme is written as u = a ~tl ~x:

n+l n U ( n+l n+1 n n )U; -U; =- U;+l +U;-l +U;+I-U;-1
4

and the amplification matrix is
G = I - lu/2 sin It>

I + lu/2 sin It>

The equivalent differential equation is

a ~X2 (U2 ) a ~x4 (1 U2 U4)(O5U)u/+ aux= - ~ 2+ 1 uxxx--g- 15+2+iO a? + ...

Observe that the scheme is not dissipative and therefore oscillations might appear in
non-linear problems.

Problem 11.5

Apply the Euler implicit scheme to the second-order space discretized diffusion
equation

~= -!!-- (E- 2 + E-1)U
dt ~X2

where

Eu; = U;+ 1

Determine the root of the characteristic p9lynomial and compare with the amplification
factor from a Von Neumann analysis. Draw a plot of the dissipation error and compare
with the results of Problem 11.5. Determine the truncation error.
Hint: Write the scheme as

u;n+l - u;n = (3(u7:/ - 2u;n+l + u7.::/)

The amplification factor is
1

G=
I + 4{3 sin 21t>/2
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The equivalent differential equation is
1 ( 1)(O4U) 1 4 ( 1. 1 1 ) 06U U,- auxx=- a(~x)2 {3 + - ~ + - a ~x {3 +-(3 +- ~+ ...
2 6 ox 3 4 120 ox

Problem 11.6

Apply the Euler implicit scheme to the convection equation with upwind discretization.
Repeat Problem 11.5 and compare.
Hint: Write the scheme as

u;n+l_Uin= -U(Uin+l_u7!!)

The amplification matrix is

1 1G--- 1 + 2u[ e-Iq,/2sin <1>/2 - 1 + [u sin <I> + 2u sin2<1>/2

and the scheme is stable for u > o.
Note that the scheme has a bidiagonal structure and observe that, in order to start the

resolution, in a sweep from i = 1 to N we have to know the solution from the left.
Hence the boundary condition to be imposed is at the left boundary. Refer to the
discussions of Section 10.2.

Problem 11.7

Solve Problem 9.8 wjth the upwind implicit Euler scheme of Problem 11.6 for
u = 0.5,1,2, after 10,20,50 time steps. Generate a plot of the numerical solution and
compare with the exact solution.

Problem 11.8

Solve the moving shock of Problem 9.9 with the upwind implicit Euler scheme of
Problem 11.6 for u = 0.5, 1,2, after 10,20,50 time steps. Generate a plot of the
numerical solution and compare with the exact solution.

Problem 11.9

Consider the predictor-corrector scheme (11.2.12) and show that it is equivalent to the
following one-step scheme with five-point support i, i :t 1, i :t 2:

2n+l n U ( n n )+ u ( n 2 II n
)Ui =Ui -2 Ui+l-Ui-l 4 Ui+l- U; +Ui-1

Shows that condition (11.2.9) leads to the CFL condition I u I ~ 1 and confirm this
result from the matrix method by a Yon Neumann analysis.

Problem 11.10

Consider equation (11.2.15) obtained from the first-order predictor-corrector method
(equation (11.2.14» and perform a Yon Neumann analysis. Show, by investigating the
behaviour of the amplification matrix for the phase angle <I> = 11', that the stability
condition has to be restricted to the CFL condition 0 < u ~ 1.

Calculate the amplification factor and plot the dissipation and dispersion error as a
function of <1>. Determine also the equivalent differential equation and compare with the
properties of the second-order upwind scheme (9.3.13).
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Problem 11.11

Show that equation (11.2.16) is obtained from the first-order predictor-corrector

method (11.2.11) when a first-order upwind difference is applied to the linear

convection equation. Obtain the necessary condition from the stability condition

(11.2.8). Show, by investigating the behaviour of the Von Neumann amplification

matrix for the phase angle <I> = 11", that this condition is not sufficient and obtain the Von
Neumann necessary and sufficient condition 0 < (] ~ 1/2.

Calculate the amplification factor and plot the dissipation and dispersion errors as a

function of <1>. Determine also the equivalent differential equation and compare with the
properties of the second-order upwind scheme (9.3.13).

Problem 11.12

Show that the McCormack scheme (11.2.18) is identical to the Lax-Wendroff scheme.

Write also the scheme by taking a forward space difference in the predictor and a

backward difference in the corrector. Analyse the stability by the method of the

characteristic polynomial and obtain the CFL condition for stability.

Problem 11.13

Solve Burger's equation with McCormack's scheme, where- -( n)2 - ( n+I )2 ( n+I )2 Hn= T and Hn+l= T - T
for a stationary discontinuity (+ I, -I) and a moving discontinuity (I, -0.5). Consider

the same condition as applied to Figures 8.5.1,8.5.2 and 9.4.1.

Problem 11.14

Repeat Problem 11.13 with the Euler implicit scheme and with the trapezoidal scheme.

Observe the appearance of strong oscillations and explain their origin by the analysis of

the Von Neumann amplification function and by the truncation error structure.

Problem 11.15

Solve Problem 9.8 with McCormack's scheme (11.2.18). Compare with the previous

results.

Problem 11.16

Solve Problem 9.9 with McCormack's scheme (11.2.18). Compare with the previous

results.

Problem 11.17

Show the unconditional stability of the Peaceman-Rachford method, equation

(11.4.28), for the two-dimensional diffusion equation (11.4.1) with central differences.

Problem 11.18

Define the stability conditions for the convection equation Ut + aux = 0, discretized with

central differences and an added second-order artificial viscosity AX£Uxx, when solved

with a fourth-order Runge-Kutta method. Determine in the (0 At) plane the curves of
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constant (0 .1t) for different Courant numbers u and for constant values of e. What is
the maximum allowable e?
Hint: Consider the equation

Ut + aux = c.1xuxx

and discretize centrally. Obtain the system
dui - a e
-= --'-- (Ui+i- Ui-l) + - (Ui+l- 2Ui + Ui-l)
dt 2.1x .1x

Determine the eigenvalues of the right-hand side tridiagonal matrix for periodic
conditions. Show that we obtain, with tf> = 27rj/N, referring to equation (10.2.40)

n I . 4e.1t. 2 /2.. .1t = - u sm tf> - - sm tf>
.1x

The artificial viscosity parameter, e, is restricted by the condition

4e .1t
0~-~2.78

.1x

Problem 11.19

Repeat Problem 11.18 for a fourth-order dissipation term added to the central
discretized convection equation of the form - e .1x3(a4u/ax4).
Hint: Apply a central-second-order difference formula for the fourth derivative of

Ut + aux = e .1x3 . Uxxxx

For instance,
dui a e-= - - (Ui+l- Ui-l)-- (Ui+2 -4Ui+l +6Ui-4ui-1 + Ui-2)
dt 2.1x .1x

Obtain the eigenvalues of the space operator on the left-hand side for a Fourier
harmonic e1i~ and show that we have

. 4e.1t
O.1t= -Iusmtf>--(I-costf»2

.1x
Determine the limit value of the dissipation parameter e as(e .1t)O~ 16 ~ ~2.78

Problem 11.20

Obtain the characteristic roots ~ for the Beam and Warming scheme of Example 11.1.2
with the eigenvalues (10.2.40). Compare with equation (EII.I.8)

Problem 11.21

Consider the two-step method formed by an explicit predictor followed by an implicit
corrector, applied to the one-dimensional diffusion equation with periodic boundary
conditions. In general terms the scheme is written as

U - Vn = .1tH( V")

L.1V=W= u- V"
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Take L= 1-£~x2a2/ax2 as implicit cu>erator, where £ is a free parameter, and
perform a central-second-order discretization.

Determine the amplification factor of the combined scheme and show that uncondi-
tional stability is obtained for all £ > o.

Show that the implicit step increases the time step limit of the explicit corrector step,
without modifying its spatial order of accuracy.
Hint: The amplification factor is

z = I - 4{3 sin2 <1>/2

I + 4£ sin 2 <1>/2



Chapter 12

Iterative Methods/or the Resolution of
Algebraic Systems

Algebraic systems of equations are obtained either as a result of the applica-
tion of implicit time-integration schemes to time-dependent formulations (as
shown in the previous chapter) or from space discretizations of steady-state
formulations.

Two large families of methods are available for the resolution of a linear
algebraic system: the direct and the iterative methods. Direct methods are
based on a finite number of arithmetic operations leading to the exact solution
of a linear algebraic system. Iterative methods, on the other hand, are based
on a succession of approximate solutions, leading to the exact solution after an
infinite number of steps. In practice, however, the number of arithmetic
operations of a direct method can be very high, and often larger than the total
number of operations in an iterative sequence limited to a finite level of
convergence, as a consequence of the finite arithmetic (number of digits) of the
computer. So much that most of the flow problems lead to sparse matrices, a
situation which would tend to favour the iterative method, particularly when
the size of the matrices is very large.

In non-linear problems we have to set up an iterative scheme to solve for the
non-linearity, even when the algebraic system, at each iteration step, is solved
by a direct method. In these cases it is often more economical, for large
problems, to insert the non-linear iterations into an overall iterative method
for the algebraic system. For problems with a smaller number of mesh points
(say, of the order of 1000) direct methods would generally not penalize the
global cost of the iterative process.

The subject of resolutions of algebraic systems has been treated extensively
in the literature, and is still an area of much research with the aim of
improving the algorithms and reducing the total number of operations. Some
excellent expositions of direct and iterative methods can be found in Varga
(1962), Wachspress (1966), Young (1971), Dahlquist and Bjork (1974),
Marchuk (1975), Hageman and Young (1981), Meis and Morcowitz (1981) and
Golub and Meurant (1983). A general presentation of matrix properties can be
found, for instance, in Strang (1976) and Berman and Plemmons (1979).

Since fluid mechanical problems mostly require fine meshes in order to
obtain sufficient resolution, direct methods are seldom applied, with the

456
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exception of tridiagonal systems. For these often-occurring systems a very
efficient direct solver, known as the Thomas algorithm, is applied, and,
because of its importance, the method and FORTRAN subroutines are
presented in the Appendix for the scalar case with Dirichlet or Neumann
boundary conditions as well as for the case of periodic boundary conditions,
leading to a matrix of the form of equation (10.2.12). Otherwise, we will
restrict this presentation to iterative methods.

The basis of iterative methods is to perform a small number of operations
on the matrix elements of the algebraic system in an iterative way, with the aim
of approaching the exact solution, within a preset level of accuracy, in a finite
and, hopefully, small number of iterations. A large number of methods are
available with different rates of convergence and complexity. The classical
relaxation methods of Jacobi and Gauss-Seidel are the simplest to implement,
including their variants known as block-relaxation, and are widely used.
Another family of iterative methods are known as the alternating direction
implicit (ADI) methods which, when optimized, have excellent convergence
properties. They are, however, difficult to optimize for general configurations.
High rates of convergence can be obtained with preconditioning techniques,
particularly when coupled to conjugate gradient methods. These methods are
more complex, but appreciable savings in computer time can often be
achieved. The most efficient method, but also the most delicate to program, is
the multigrid method, which appears to be the most efficient of all the iterative
techniques. It leads to the same asymptotic convergence rate, or operation
count, as the best fast Poisson solvers, without being limited by the same
restricted conditions of application.

12.1 BASIC ITERATIVE METHODS

The classical example on which the iterative techniques are applied and
evaluated is Poisson's equation on a uniform mesh. We will follow this tradi-
tion here, which allows us to clearly demonstrate the different approaches,
their properties, structure and limitations.

12.1.1 Poisson's equation on a Cartesian, two-dimensional mesh

Let us consider the Poisson equation

~u=f O~x~L, O~y~L (12.1.1)

with

u = g on the boundary of the rectangle (12.1.2)

and discretized with a second-order, five-point scheme as follows, with
~x= ~y=L/M,i,j=O,...,M:

(Ui+ l,j - 2Uij + Ui-I,j) + (Ui,j+ 1- 2Uij + Ui,j-l) = fij~X2 (12.1.3)
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If the vector U is set up with the Uij classified line by line, that is,

UT = (UII, U21, ..., UMI; U12, U22, U32, ..., UM2; ...; Ulj, U2j, ..., Uij, ..., UMj; ...

(12.1.4)

The matrix system obtained from equation (12.1.3) is, with S being a
(M2 x M2) matrix,

SU= F ~X2 + G = - Q (12.1.5)

M spaces Uti
-4 1 1 .

.. .

.. .

.. .

1 - 4 1 1 Uil
. .
. .
. .

1 1 -4 1 1 Uij

1 1 -4 1 1 Ui,j+1
M spaces M spaces :

1 1 -4 UM-I;M-I

I

fit glO+ gal

/;1 giG
. .
. .
. .

= ~X2 /;j - 0
. .
. .
. .

/;,j+ I 0
:: (12.1.6)
fM-I,M-I gM.M-I + gM-I,M

The first equation for i = j = 1 becomes, with the Dirichlet conditions

(12.1.2),

u21-4ull+uI2=~x2fll-glo-gol= -qll (12.1,7)

Along j = 1 we have

Ui+I,I-4uil+Ui-I.I+Ui2=~X2/;I-giO= -qil (12.1.8)

Similar equations can be written for the other boundaries (see Problem
12.1). The vectors F, G are defined by equation (12.1.5). The sum of the
right-hand side vectors will be represented by the vector Q. This matrix is
conveniently written in block form by introducing the (M x M) tridiagonal
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Figure 12.1.1 Cartesian mesh for Laplace operator

matrix B(I, -4, I) and the unit (Mx M) matrix I:

B +1
I +B +1

S= I B I (12.1.9)

I B

where formally S now has M lines and columns, each element being itself an
(M x M) matrix. This corresponds to a grouping of all the Uij of the same line
into a subvector Vi, with the superscript T indicating the transpose:

VjT=(Ulj,...,Uij,...,UMj)
T T T T (12.1.10)U =(Vl,...,Vj,...,VM)

It is seen that S has the following properties:

(I) S is irreducible diagonal dominant (see the first line); and
(2) (- S) is symmetric and hence non-singular and positive definite.

In order to relate the notation in system (12.1.6) to the classical notations of
linear algebra we consider the vector U, with elements Uf, 1= I, ..., N = M2,
where N = M2 is the total number of mesh points. Hence to each component
Uij we associate the component Uf, where I is, for instance, defined by
1= i + (j - I)M, as would be the case in a finite element discretization.
Equation (12.1.5) will be written as

N
~ SfJUJ= -Qf 1= I,...,N (12.1.11)

J=l

The coefficients SfJ represent the space discretization of the L-operator; in a
finite element discretization, SfJ are the stiffness matrix elements.
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12.1.2 Point Jacobi Method-Point Gauss-Seidel Method

In order to solve for the Uij (or u/) unknowns in equation (12.1.3) we could
define an initial approximation to the vector U and attempt to correct this
approximation by solving equation (12.1.3) sequentially, sweeping through the
mesh, point by point, starting at i = j = I, following the mesh line by line or
column per column. If we indicate by uij (or uJ') the assumed approximation
(n will be an iteration index), the corrected approximation is uij+ I (or
UJ'+I), and can be obtained (see Figure 12.1.2(a» as

uij+1 = ~(u7+1. + u7-1. + uZj-1 + uZj+l) + ~qij (12.1.12)

where qij represents the right-hand side.
In a general formulation for system (12.1.11) the point Jacobi method is

defined by the algorithm

UJ'+I = 1-(- qJ' - f SIJU1) (12.1.13)
SII J= I

J~I

The general formulation is best represented in matrix form if we decompose S
into a sum of three matrices containing the main diagonal D, the upper
triangular part F and the lower triangular part E. That is, we write

S=D+E+F (12.1.14)
with

0 0 0 0
SilO S21 0 0

D = . SII . E = S31 S32 0

0 SNN Sli' SIJ 0
. . .

SNI . . SN.N-I 0

0 SI2 . SIJ' SIN
0 .

F = 0 . .. SIN
0 .

SN-I.N
0 0 (12.1.15)

For the Laplace operator the splitting (12.1.14) is obvious from the matrix
(12.1.9).

Equation (12.1.13) can be written as

DUn+I=_Qn_(E+F)un (12.1.16)

defining the iterative point Jacobi method for system (12.1.11), written as

(D+E+F)U=-Qn (12.1.17)
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The iterative Jacobi scheme can also be written in A-form by introducing the
residual Rn at iteration n:

Rn = R(Un) = SUn + Qn = (D+ E+ F)Un + Qn (12.1.18)

Equation (12.1.16) can be rewritten, after subtraction otDUn on both sides,

DAUn = - Rn (12.1.19)

where

AUn = Un+I - Un (12.1.20)

The residual is an important quantity, since it is a measure of the error at a
given iteration number n. Obviously, the iterative method will have to generate
a sequence of decreasing values of A Un and R n when the number of iterations

increases, since the converged solution corresponds to a vanishing residual.
For equation (12.1.12) the residual form (12.1.19) is obtained by subtracting
uij from both sides, leading to

4(un+I U n.) _ (ulJ .+u lJ .+u lJ. I+U lJ. I - 4u lJ.)+q lJ.ij - iJ - I+I,J I-I,J I,J+ I,J- IJ lJ

(12.1.21)

Gauss-Seidel method
In Figute 12.1.2(a) we observe that the points (i, j - 1) and (i - 1, j) have
already been updated at iteration (n + 1) when Uij is calculated. We are
therefore tempted to use these new values in the estimation of uij+ I as soon
as they have been calculated. We can expect thereby to obtain a higher
convergence rate, since the influence of a perturbation on un is transmitted
more rapidly. With the Jacobi method a perturbation of U?-+I~j will be felt on Uij
only after the whole mesh is swept, since it will occur for the first time at the
next iteration through the equation for uij+2. With the Gauss-Seidel method
this influence already appears at the current iteration, since uij+ I is imme-

diately affected by u?-+I,j (see Figure 12.1.2(b».

( a) Jacobi method ( b) Gauss-Seidel method

j '\oJ)-- j

i i

0 Unknown at iteration n + 1

0 Known from iteration n

6, Known from iteration n +1

Figure 12.1.2 Poini relaxation method
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As a byproduct it can be observed that as soon as a new value uij + I is

calculated, the 'old' value uij is no longer needed. Hence the new value can be
stored in the same location and can overwrite, in the coding, the local value
uij. Therefore only one vector U of length N has to be stored, while two
vectors Un+ I and Un have to be saved in the Jacobi method.

The Gauss-Seidel method is, from every point of view, more advantageous
than the Jacobi method, and is defined by the iterative scheme

n+1 1( n + n+l n+1 n ) 1 n (12 1 22)Uij ="4 Ui+l.j Ui-I,j+ Ui,j-1 + Ui,j+1 + "4qij . .
For the general system (12.1.11) the Gauss-Seidel method takes all the
variables associated with the lower diagonal of the matrix S, at the new level
(n + 1). Hence instead of equation (12.1.13), we have

1 ( I-I N )U}'+l=- -q}'- ~ SIJUj+l- ~ sIJu1 (12.1.23)
SI1 J=I j=I+1

In operator form this scheme can be written as

(D+E)Un+l= _Qn- FUn (12.1.24)

and in residual form:

(D+E)ilUn= -Rn (12.1.25)

By comparing this equation with equation (12.1.19) it can be seen that the
Gauss-Seidel method corresponds to another choice for the matrix which
'drives' il Un to zero, that is, to convergence or, equivalently, to another
splitting of the matrix S.

12.1.3 Convergence analysis of iterative schemes

An iterative method is said to be convergent if the error tends to zero as the
number of iterations goes to infinity. If U is the exact solution of system
(12.1.5) the error at iteration n is

en= Un-U (12.1.26)

Let us consider an arbitrary splitting of the matrix S:

S=P+A (12.1.27)

and an iterative scheme

PUn+l= -Qn-AUn (12.1.28)

or equivalently:

PilUn = - Rn (12.1.29)

The matric P will be called a convergence or conditioning matrix (operator),
and is selected such that system (12.1.28) is easily solvable. It is important to
observe here that the iterative scheme (12.1.29) replaces the full iterative
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scheme, corresponding to a direct method:

SUn+l=_Qn or S~Un=-Rn (12.1.30)

Subtracting from equation (12.1.28) the relation (P + A)O = - Q we obtain,

assuming that Q is independent of U,

Pen+l = - Aen

or

en+l = (- p-1 A)en = (- p-1 A)nel = (1 - p-ls)ne1 (12.1.31)

where (p-l A)n is the matrix p-l A to the power n. If II en+lll is to go to zero
for increasing n, the matrix p-l A should be a convergent matrix and its
spectral radius has to be lower than one.

The iterative scheme will be convergent if and only if the matrix G, called
the iteration or amplification matrix (operator),

G = 1 - p-1S (12.1.32)

is a convergent matrix, that is, satisfying the condition on the spectral radius:

p(G) ~ 1 (12.1.33)

or

>v( G) ~ 1 for all J (12.1.34)

All the eigenvalues >v(G) of G = (1 - p-1S) have to be lower than one in

modulus for the iterative scheme to converge. Hence it is seen that we can
replace equation (12.1.30) and the matrix S, acting on the corrections ~ Un, by
another operator P, which is expected to be easier to invert, provided the
above conditions are satisfied. Except for this condition, the choice of Ii is-
arbitrary. If P = S- 1 we obtain the exact solution, but this corresponds to a

direct method, since we have to invert the matrix S of the system. (See Section
12.4 for a generalization of these considerations to non-linear problems.)

The residual Rn is connected to the error vector en by the following relation
obtained by subtracting Rn (equation (12.1.18» from R = sO + Q = 0, assum-
ing Q to be independent of U:

Rn = Sen (12.1.35)

This shows the quantitative relation between the error and the residual and
proves that the residual will go to zero when the error tends to zero.

In practical computations, the error is not accessible since the exact solution
is not known. Therefore we generally use the norm of the residual II Rn II as a
measure of the evolution towards convergence, and practical convergence
criteria will be ~et by requiring that the residual drops by a predetermined
number of orders of magnitude. Observe that even when the residual is
reduced to machine accuracy (machine zero) it does not mean that the solution
Un is within machine accuracy of the exact solution. When SU results from a
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space discretization, achieving machine zero on the residual will produce a
solution Un, which differs from the exact solution (; of the differential
problem by the amount of the truncation error. For example, a second-order
accurate space discretization, with ~x = 10-2, will produce an error of the
order of 10-4 on the solution, which cannot be reduced further even if the
residual equals 10-14.

Equation (12.1.28) can also be written as

Un+1 = (1 - p-IS)Un - p-IQ
1 (12.1.36)= GUn- p- Q

Comparing equation (12.1.31), written here as

en+l= Gen=(G)n+leo (12.1.37)

with equation (10.1.26) (and equation (12.1.36) with (10.1.25», the similitude
between the formulation of an iterative scheme of a stationary problem and a
time-dependent formulation of the same problem clearly appears. The matrix
G, being the amplification matrix of the iterative method, can be analysed
along the lines developed in Chapters 8 and 10. We will return to this very
important link below.

Convergence conditions for the Jacobi and Gauss-Seidel methods
For the Jacobi methods G = D- 1 (E + F) = 1 - D-1 S and for the Gauss-

Seidel method G= -(D+E)-lp= 1-(D+E)-IS. From the properties of
matrices we can show that the Jacobi and Gauss-Seidel methods will converge
if S is irreducible diagonal dominant. When S is symmetric it is sufficient for
convergence that S, or (- S), is positive definite for both methods. In
addition, for the Jacobi method, (2D - S), or (S - 2D) in our case, also has to
be positive definite.

Estimation of the convergence rate

An important problem of iterative methods is the estimation of the rate of
reduction of the error with increasing number of iterations. The average rate
of error reduction over n iterations can be defined by

- (II en 11)11 n
~en = m (12.1.38)

From equation (12.1.37) we have

"Ke;; ~ II(G)n jilin (12.1.39)

Asymptotically it can be shown (Varga, 1962) that this quantity tends to the
spectral radius of G for n -+ 00:

s= lim II(G)nlllln=p(G) (12.1.40)
n-+~
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n

Figure 12.1.3 Typical residual history of a relaxation method

The logarithm of s is the average convergence rate, measuring the number of
iterations needed to decrease th~ error by a given factor.

If we consider s to be a valid measure of ""3:e;; the norm of the error will be
reduced by an order of magnitude (factor 10), in a number of iterations n,
such that

(M'1n ~ s=p(G) (12.1.41)
or

n ~ -1/10g p(G) (12.1.42)

This relation is valid asymptotically for large n, and is generally not to be
relied on at small values of n. In the early stages of the iterative process it is not
uncommon, particularly with non-linear problems, to observe even an increase
in the residual before it starts to decrease at larger n. Also we can often detect
different rates of residual reduction, usually an initial reduction rate much
higher than s, slowing down gradually to the asymptotic value.

The explanation for this behaviour is to be found in the frequency
distribution of the error and in the way a given iterative method treats the
different frequencies in the spectrum. The residual history of curve (a) of
Figure 12.1.3 is typical for a method which damps rapidly the high-frequency
components but damps poorly the low-frequency errors, while the opposite is
true for curve (b). The reason for this behaviour is explained by an eigenvalue
analysis.

12.1.4 Eigenvalue analysis of an iterative method

The frequency response, as well as the asymptotic convergence rate of an
iterative method, are defined by the eigenvalue spectrum of the amplification
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matrix G and by the way the matrix p-1 treats the eigenvalues of the matrix 8.
Referring to Section 10.1, equation (10.1.48), the solution Un+ 1 can be written

as a linear combination of the eigenmodes VU) of the matrix 8 (which
represents the space discretization of the differential operator L). Each term
represents the contribution from the initial component UOJ damped by the
factor (A'J), where >v is the eigenvalue of the matrix G, associated with the
eigenvalue OJ of the matrix 8. We assume here that 8 and G commute and have
the same set of eigenfunct;ons, although this will not always be true, even in
simple cases. For the present example of Poisson's equation on a Cartesian
mesh this propetry is satisfied for the Jacobi iteration but not for the
Gauss-Seidel method, since the matrices (D + E) -I and 8 do not commute.
However, the conclusions of this section with regard to the convergence
properties of iterative methods and their relation to the eigenvalues of the
space operator will remain largely valid, independently of this hypothesis, as
can be seen from the analysis of Section 12.1.5. Hence we assume

Un= ~ A'J UOJ' V(J)- ~.Q;;!. V(J)(I- A'J) (12.1.43)
J=I J=I OJ

Note that A'J is >v to the power n, and that >v represents the variable z(OJ) of
equation (10.1.48), since both are to be considered as eigenvalues of the
amplification matrix.

The first term is the 'transient' behaviour of the homogeneous solution while
the last is a transient contribution from the source term. Since, for conver-
gence, all the >v are in modulus lower than one, after a sufficiently large
number of iterations we are left with the 'converged' solution:

lim Un= -~.Q;;!. V(J) (12.1.44)
n-«> J OJ

which is the eigenmode expansion of the solution U = - 8-1 Q. Indeed, by

writing U:

U=~ UJo V(J) (12.1.45)
J

we obtain

SU=~ UJflJ' V(J)= -~ QJo V(J) (12.1.46)
J J

Since ~he V(J) form a basis of the V-space:

UJ=-QJ/OJ (12.1.47)

which shows that equation (12.1.44) is indeed the solution. Equation (12.1.43)
shows that the transient will, for large n, be dominated by the largest
eigenvalue >v; this explains relation (12.1.42).

It is seen from equation (12.1.31) that the error en behaves like the
homogeneous part of (12.1.43). Therefore, if e~ is the initial error distribution,
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after n iterations the error is reduced to

en=L:: A'Je~. V(J) (12.1.48)
J

The residual Rn can also be expanded in a series of eigenfunctions V(J), since
from equation (12.1.35) we can write

Rn = L:: A'J e~ S. V(J)
J

(12.1.49)

= L:: A'J OJ e~. V(J)
J

If we assume the eigenvectors V(J) to be orthonormal, then the L2-norm of
the residual will be

[ ] 1/2 II Rn IIL2 = ~ (A'J OJ e~)2 (12.1.50)

When the iteration number n increases, the low values of N will be damped
more rapidly, and at large values of n we will be left with the highest N,
particularly those which are the closest to the upper limit of one. Hence if the
iterative scheme is such that the highest eigenvalues N = A(OJ) are close to
one, the asymptotic convergence rate will be poor. Since generally the high
frequencies of the operator S produce the lowest values of N, we will tend to
have a behaviour such as shown on curve (a) of Figure 12.1.3, where the initial
rapid decrease of the residual is due to the damping of the high frequencies
(low A), and where we are left, at large n, with the low-frequency end (high A)
of the error spectrum.

On the other hand, if such an iterative method is combined with an
algorithm which damps effectively the low frequencies of S, that is, the large
N region, then we would obtain a behaviour of the type shown on curve (b) of
Figure 12.1.3. This is the principle at the basis of the multi-grid method
described in Section 12.6.

The relation AJ = A(OJ) can be computed explicitly only in simple cases. For
instance, for the Jacobi method we have, representing by GJ the amplification
matrix,

GJ=I-D-IS (12.1.51)

and since D is a diagonal matrix,

1N = 1 - d:; OJ(S) (12.1.52)

Note that we define S as the matrix representation of the discretized
differential operator, which has to satisfy the condition (10.1.17) of stability of
the time-dependent counterpart, and therefore have eigenvalues with negative
real parts. Hence S will be negative definite when all the eigenvalues are real.
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12.1.5 Fourier analysis of an iterative method

The Fourier analysis allows a simple estimation of eigenvalues, when periodic
conditions are assumed, such that the Fourier modes are eigenvectors of the S
matrix and of the amplification matrix G. This is the case for the Jacobi
method but not for the Gauss-Seidel iterations.

With a representation such as equation (8.4.6) and the discretization (12.1.3)
with Dirichlet boundary conditions, the eigenfunctions of S reduce to sin
(icf>x) . sinUcf>y) and the eigenvalues are equal to (dropping the index J)

{} = - 4(sin 2cf>x/2 + sin 2cf>y/2) (12.1.53)

cf>x=11l"/M, cf>y=m1l"/M, J=I+(m-I)M, l,m=I,...,M-I

The eigenvalues of GJ are therefore, with dj = - 4,

>"( GJ) = I - (sin 2cf>x/2 + sin 2cf>y/2) = t(cos cf>x + cos cf>y) (12.1.54)

Observe that this can be viewed as resulting from a Von Neumann stability
analysis on the pseudo-time scheme (12.1.12), where n is interpreted as a time
index.

At the low-frequency end, cf>x ~ 0, cf>y ~ 0, the damping rate is very poor,
since >.. ~ I. The intermediate frequency range is strongly damped, that is, for
the frequencies corresponding to high values of (sin2cf>x/2 + sin2cf>y/2). The
spectral radius p( GJ) is defined by the highest eigenvalue, which corresponds
to the lowest frequencies of the {} spectrum. These are obtained for
cf>x = cf>y = 1I"/M:

p(GJ)=cos 1I"/M (12.1.55)

Hence the convergence rate becomes, for small mesh sizes ~X= ~y, that is,
for increasing number of mesh points,

11"2 11"2p(GJ) ~ 1 ~2:M2= 1-m= 1-0(~X2) (12.1.56)

and, from equation (12.1.42), the number of iterations needed to reduce the
error by one order of magnitude is, asymptotically, (2N/0.4311"2). Since each
iteration (12.1.12) requires 5N operations, the Jacobi method will require
roughly 2kN2 operations for a reduction of the error by k orders of
magnitude.

Gauss-Seidel method

Applying a straightforward Von Neumann analysis to the homogeneous part
of equation (12.1.22) leads to

(4 - e-l~x - e-l~Y»"as = el~x + el~y (12.1.57)

However, this does not give the eigenvalues of the matrix Gas, since this
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matrix does not commute with S. It can be shown, Young, (1971), that the
corresponding eigenvalues of the amplification matrix of the"'Gauss-Seidel
method are equal to the square of the eigenvalues of the Jacobi method:

)"(Gas) = !(cos t/>x+cos c/>y)2= ).,2(GJ) (12.1.58)

This eigenvalue does not satisfy equation (12.1.57). Hence the spectral radius
is

p(Gas) = p2(GJ) = cos211"/M (12.1.59)

and for large M,

11"2 11"2
p(Gas) ~ 1-~= 1-~ (12.1.60)

M M

and the method converges twice as fast as the Jacobi method, since the number
of iterations for one order of magnitude reduction in error is N/(0.4311"2).

For a more general case, it can be shown, Varga, (1962), that the Gauss-
Seidel method converges if S is an irreducible diagonal dominant matrix,
or if (- S) is symmetric, positive definite. In the latter case we have
).,( Gas) = )., 2( GJ). Interesting considerations with regard to the application of
Fourier analysis to iterative methods can be found in LeVeque and Trefethen
(1986).

12.2 OVERRELAXATION METHODS

We could be tempted to increase the convergence rate of an iterative method
by 'propagating' the corrections ~Un = Un+1 - Un faster through the mesh.
This idea is the basis of the overrelaxation method, introduced independently
by Frankel and Young in 1950 (see Young, 1971; M~an and Young, 1981).

The over relaxation is formulated as follows. If Un+ I is the value obtained
from the basic iterative scheme the value introduced at the next level Un+ I is

defined by
Un+I=",Uii"+T+(l-",)Un (12.2.1)

where", is the overrelaxation coefficient. Alternatively, a new correction is
defined:

~Un = Un+1 - Un with ~Un = ",W (12.2.2)

When appropriately optimized for maximum convergence rate a considerable
gain can be achieved, as will be seen next.

12.2.1 Jacobi overrelaxation

The Jacobi overrelaxation method becomes, for the Laplace operator,

uij + I = ~ (u7+ I,j + u7-I,j + u7.j-1 + u7,j+ 1+ qij) + (1 - '" )uij (12.2.3)
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In operator form, equation (12.2.3) becomes

DUn+ 1 = _",Qn - ",(E+ F) Un + (1- ",)DUn = _",Qn - ",sun + DUn

(12.2.4)

or

D ~Un = -",Rn (12.2.5)

instead of equation (12.1.19). The new amplifIcation matrix of the iterative
scheme GJ("') is, from equation (12.2.4),

GJ(",)=(I-",)I+",GJ=I-",D-1S (12.2.6)

The convergence will be ensured if the spectral radius of GJ("') is lower than
one, that is, if

p(GJ("'»~ 1(1-",)I+",p(GJ)< 1

This will be satisfied if

2
0<",< (12.2.7)

1 +p(GJ)

The eigenvalues are related by

A(GJ(",»=(I-"')+"'A(GJ) (12.2.8)

and this allows us to select optimum values of '" for maximal damping in a
given frequency range. As a function of "', the eigenvalue A( GJ("'» will vanish
for the particular choice", = 1/(1 - A( GJ» and the corresponding frequency

component in developments, (12.1 :43) or (12.1.48) will not contribute. Hence
if we attempt to damp selectively the high frequencies, corresponding to the
values of A towards the end-point of - I, we could select", values lower than
one. On the other hand, the low frequencies generally span the A-region close
to the other end-point of the permissible A-range, namely A ~ I, and we would
select values of '" towards the higher end of its range if the goal would be to
damp the low frequencies more selectively.

We can also define an optimum value of "', "'opt, which produces an optimal
damping over the whole range. From Figure 12.2.1, where I A(Gj("') I is
plotted against", at constant values of A( GJ), the intersection of the curves
associated, respectively, with the minimum value of A( GJ), Amin, and the
maximum eigenvalue Amax, appears to improve best the damping over the
whole range. Hence "'opt is defined by

- 1 + "'opt(1 - Amin) = 1 - "'opt (I - Amax)

or

2"'opt =2 ) (12.2.9)- (Amin + Amax
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I >.(",>1 Unstable

, ~

'"

-1- "'opt 1
1- >'min -;-:-):"-mo.

Figure 12.2.1 Optimal relaxation for Jacobi method

For the Laplace operator, from equation (12.1.54)

)..ma. = - )..lIiin = COS 7r/M (12.2.10)

and U)opt = 1. Hence the Jacobi method is optimal by this definition.

12.2.2 Gauss-Seidel overrelaxation-successive overrelaxation (SOR)

The benefits of the overrelaxation concept assume their full value when applied
to the Gauss-Seidel method, and in this case the methods are usually called
successive overrelaxation methods, indicated by the symbol SOR. Applying
definition (12.2.1) to the Gauss-Seidel method (12.1.22) for the Laplace
operator leads to the following iterative scheme:

-;;:j:""I 1( n + n+1 n+1 n ) 1 n (12211)Uij =4Ui+l.j Ui-1,j+Ui,j-1+Ui,j+1 +4qij ..
n+1 -n-+1 (1 ) n Uij = U)Uij + - U) uij

In operator form this corresponds to the general residual formulation

D ~Un = - Rn - E ~Un (12.2.12)

and the overrelaxation method is defined by the iteration operator (D + U)E),
since equation (12.2.12) reads

(D+U)E) ~Un= -U)Rn (12.2.13)

The amplification matrix GsoR (U) is now

GSOR(U)= 1-U)(D+U)E)-1S
- (D E) -1 [(1 ) (12.2.14) - +U) -U) D-U)F]

Condition on the relaxation parameter CJJ

Since GsoR (CJJ) is a product of triangular matrices its determinant is the
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product of its diagonal elements. Hence

det GSOR("') = det(I+ ",D-1E)-1 . det[(I- ",)1 - ",D-IJ'1

=1'det[(I-",»I-",D-1J'1 (12.2.15)
= (1 - ",)N

On the other hand, the determinant of a matrix is equal to the product of its
eigenvalues, and hence

p(GSOR(",»N ~ I det GSOR("') 1= (1 - ",)N (12.2.16)

The spectral radius will be lower than one if

1(1 - "') I ~ p(GSOR("'» < 1 (12.2.17)

or
0<",<2 (12.2.18)

For irreducible diagonal dominant matrices it can be shown (Young; 1971)
that the SOR method will converge if

2
0<",< (12.2.19)

1 +p(GGs)

More information can be obtained for symmetrical matrices. The eigenvalues
of GSOR ("') satisfy the following relations, for symmetrical matrices of the
form

I DI p Is= pT D2 (12.2.20)

where D1 and D2 are block diagonal, writing >"(",) for >"( GSOR ('" »:

(1) The eigenvalues of the SOR amplification factor satisfy the relation

>"(",)=I-",+",>..1/2(",).>..(GJ) (12.2.21)

(2) For", = 1 we recover relation (12.1.58):

>"('" = 1) = >"(GGs) = >..2(GJ) (12.2.22)

(3) An optimal relation coefficient can be defined, rendering p (GSOR ("'»
minimum, as

2
"'opt = 1" _2".. "" (12.2.23)

1-.J(I-p (GJ»

with
p(GSOR("'opt» = "'opt - 1 (12.2.24)

Note the role played by the eigenvalues of the Jacobi point iteration matrix GJ.
For Laplace's operator:

p(GJ) = cos 1r/M (12.2.25)

"'opt = l-+Si~(;I-:M) ~ 2(1 -~) (12.2.26)
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and the spectral radius at optimum relaxation coefficient UJopt is

1-sin(1I"/M) 11" ( 1 )p(OSOR(UJopt» = 1 + sin(1I"/M) ~ 1 - M+ 0 M2 (12.2.27)

The number of iterations for a one order of magnitude reduction in error
norm is of the order of 2.3M/1I" ~ IN. Compared with the corresponding
values for Jacobi and Gauss-Seidel iterations, the optimal SOR will require
kNJN operations for a reduction of the error of k order of magnitude. This
represents a considerable gain in convergence rate.

For non-optimal relaxation parameters, however, this rate can seriously
deterioriate. Since, for more general problems, the eigenvalues are not easily
found, we can attempt to find numerical estimates of the optimal relaxation
parameter. For instance, for large n, the error being dominated by the largest
eigenvalue, we have, from equation (12.1.37) and (12.1.48),

p(O) = lim II en+III/11 en II (12.2.28)
n--~

and when this ratio stabilizes we can deduct p( OJ) from equation (12.2.21) by
introducing this estimation of p( 0) for A(UJ) and find UJopt from equation
(12.2.23). Other strategies can be found in Wachspress (1966) and Hageman
and Young (1981).

12.2.3 Symmetric successive overrelaxation (SSOR)

The SOR method, as described by equation (12.2.11), sweeps through the
mesh from the lower left corner to the upper right corner. This gives a bias to
the iteration scheme which might lead to some error accumulations, for
instance if the physics of the system to be solved is not compatible with this
sweep direction. This can be avoided by alternating SOR sweeps in both
directions. We obtain a two-step iterative method (a form of predictor-cor-
rector approach), whereby a predictor if+T72 is obtained from a SOR sweep
(12.2.11) followed by a sweep in the reverse direction starting at the end-point
of the first step. The SSOR can be described in residual form by

(D + UJE) .1if+T72 = - UJRn (12.2.29)

(D+UJF)"W= -UJR(U1i+172) (12.2.30)

with
Un+I/2= Un+ .1 un + 1/2

- - (12 2 31)Un + 1 = Un + 1/2 + .1 Un = Un + .1 Un + 1/2 + .1 Un . .

This method converges under the same conditions as the SOR method, and an
optimal relaxation parameter can only be estimated approximately as

2
UJopt ~ /..", _2"., \\1 (12.2.32)1+.,,[2(1-p (OJ»]
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Hence the SSOR method converges twice as fast as SOR, but since it requires
twice as much work there is not much to be gained in convergence rate.
However, SOR might lead to better error distributions and is a good candidate
for preconditioning matrices. Also, when applied in conjunction with non-
stationary relaxation, significant improvements in convergence rate over SOR
can be achieved, Young (1971).

12.2.4 Successive line overrelaxation methods (SLOR)

We could still accelerate the convergence of the SOR method by increasing the
way the variations d Un are transmitted throughout the field if we are willing to
increase the workload per iteration by solving small systems of equations.
Referring to Figure 12.2.2, for the Laplace operator, we could consider the
three points on a column i, or on a line j, as simultaneous unknowns, and
solve a tridiagonal system along each vertical line, sweeping through the mesh
column by column from i = 1 to i = M (Figure 12.2.2(a» or along horizontal
lines as in Figure 12.2.2(b), from j = 1 to j = M. This is called line Gauss-
Seidel (CJJ = 1) or line successive overrelaxation (generally abbreviated as
SLOR) when CJJ ~ 1.

For the Laplace operator the SLOR iterative scheme along vertical lines
(VLOR) is defined by

-n-+T I ( n n + I -n-:iT -n-:iT ) I n
Uij =4~,j+Ui-l.j+Ui,j-I+Ui.j+l +4qij

(122 33)n+1 n+1 n . .
Uij =CJJuij +(l-CJJ)uij

or, in incremental form:

4dUij - dUZj-l - dUZj+ 1 - CJJ dU7-I,j = CJJRij (12.2.34)

which is solved by the tridiagonal Thomas algorithm in 5M operations for
each line. Hence 5M2 = 5N operations are required for all the tridiagonal

.L,
r

. .L,
J r .J

...
or'

i i

(a) (b)

D Unknown at iteration n + 1

0 Known from iteration n

6, Known from iteration n + 1
Figure 12.2.2 Line relaxation method '.'
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systems. This number is to be roughly doubled to take into account the
computation of the right-hand side terms.

A Jacobi line relaxation method can also be defined and written as
-n+T 1( n n -;;";iT -;;";iT ) + 1 n
Uij =4!!.!-":-!,j+ Ui-I,j+ Ui,j-1 + Ui,j+1 4qij (12.2.35)

n+l n+l +(l ) n Uij =CJJuij -CJJ uij

or, in incremental form:

4.lUij- .lUlj-l- .lUlj+1 =CJJRij (12.2,36)

and corresponds in Figure 12.2.2 to a replacement of the triangles by a circle
symbol.

In order to put line relaxation methods in operator form we need a splitting
of the S matrix, different from equation (12.1.15), since the grouping of points
is no longer done with respect to the diagonal but along lines. With the
definition of U in equation (12..1.4) as a classification line by line, the block
form of the matrix S, given by equation (12.1.9), has precisely the appropriate
form. The block diagonal elements B(l, -4,1) operate on the element Uij
along the constant j-lines, while the unit block matrices / operate on the
corresponding points of the i-column. Hence we introduce a splitting for the
matrix S:

S = D + V + H (12.2.37)

where D is the diagonal matrix equal to - 4/ in the present example. In block
form:

B(1,-4,1) 0 /
B(1,-4,1) 0 /0/

H+D= B(1,-4,1) V= / 0 /
. B(1,-4,1) .

0 /. 0

(12.2.38)
or explicitly:

0-1: : B(I,O,I)
I1 0 1 I I B(I,O,I)

I I
1 0 1 I I .

1 0:: .H= . : 0 1 : = B(l,O,l)

: 1 0 1 :
: 1 0 I:
: 1 0:
I I .
I I

: :. (12.2.39)
More generally, referring to equation (12.1.9) H is defined as the matrix

formed by the block diagonal el~ments where the main diagonal D has been
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subtracted and V is defined by the off-diagonal block elements. Each (M x M)
block represents the coefficients of the space-discretization scheme along a
horizontal j-line for the diagonal blocks, and along the associated points on
the vertical i-lines for the off-diagonal block elements of V.

With the above splitting of A the Jacobi line relaxation along the successive
vertical lines is defined by the following generalization of equation (12.2.36):

(D+ V)~Un= -UJRn (12.2.40)

The iteration matrix is

GL(UJ) = 1-UJ(D+ V)-IS (12.2.41)

For the Gauss-Seidel overrelaxation method, as illustrated in Figure 12.2.2,
we have to introduce splitting between the upper and lower triangular parts of
Hand V. Defining by subscripts U and L these submatrices, we have with

H= Hu + HL, V= Vu + VL (12.2.42)

the operator form for the classical vertical line relaxation method (VLOR),
generalizing equation (12.2.34):

[D + V + UJHL] ~Un = - UJRn (12.2.43)

This amplification matrix of this VLOR scheme is

GVL = 1 - UJ[D + V + UJHL]-IS (12.2.44)

The optimization of UJ can be shown to satisfy relations (12.2.23)-(12.2.25) for
the point relaxation method. The horizontal line relaxation (HLOR) is i
obtained by interchanging Hand V.

Many variants of the relaxation method can be derived by combining point
or line relaxations on alternate positions or on alternate sweep directions.
A few of them are listed here and their matrix. structure and eigenvalues
for periodic conditions can easily be derived. It can be shown that the line
relaxations for the Laplace operator have a convergence rate twice as fast as
the point relaxations. The overrelaxation method (SLOR) is J2 times faster
than SOR at the same value of the optimal UJ.

Red-black point relaxation

In this approach the Jacobi relaxation method is applied to two distinct series
of mesh points, called red and black points, where the red points can be
considered as having an even number 1= i + (j - I)M and the black points an
odd number (see Figure 12.2.3). If GJ(UJ) is the iteration matrix of the point
Jacobi relaxation method (equation (12.2.6» we have the two-step algorithm,
where b;j designates the non-homogeneous terms:

U"7;+172 = GJ(UJ)uij + bij (i + j) even (red points)
1/2 (12.2.45)uD + = uij (i + j) odd (black points)

~
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1 .r
T

'+1J 1" T ,

j

j-1 --{

i-1 i i +1

0 Red point

~ Block point

Figure 12.2.3 Red-Black ordering

followed by the second step:
urJ.+ 1 = G ("' ) ~ + ~ ( i + J'

) odd (black Points)I) J I) I) (12.2.46)
uij + 1 = u;j + 1/2 (i + j) even (red points)

The relaxation factors may be different in the two steps. We can also introduce
the SOR iteration matrix GsoR ("') instead of GJ("').

Zebra line relaxation

Here Jacobi line relaxations are performed on alternating lines. If GL(",) is the
Jacobi line relaxation operator (equation (12.2.41» then the Zebra algorithm
along vertical lines is

--;;-:;:-m G ( ) n bn . ddu.. = L '" u..+.. 10~ lJ lJ (12.2.47)
u;j+ 1/2 = uij i even

and

u;j+l = GL("') u-7l"I72 + ~ i even
n+ 1 n+ 11/2 . (12.2.48)

uij = U;j 1 odd

An alternative variant obviously exists for the horizontal lines, and various
combinations can be defined such as interchanging of horizontal and vertical
lines, alternating the sweeping directions or considering multiple zebras with
different families of lines. Note that Gauss-Seidel zebra relaxation can be
defined, whereby the iteration matrix of equation (12.2.44) is used instead, and
that these schemes can be used by themselves as well as 'smoothers' in
multigrid iterations.

An important aspect of the iterative techniques is their ability to vectorize on
parallel computers. For instance, line Jacobi vectorizes much easier than line
Gauss-Seidel 6verrela~ation (see Figure 12.1.5), and, although less efficient
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j+1

j

j-1

i -1 i i +1

(0)

j+1

j

j -1

j-1 i i +1
(b)

Figure 12.2.4 Zebra line relaxation along (a) horizontal lines
and (b) vertical lines

than the standard SLOR, it might be more attractive for certain applications
on parallel computers. In that respect, the advantage of the Zebra method
appears clearly.

12.3 PRECONDITIONING TECHNIQUES

All the iterative schemes of the previous sections can be put under the re~idual
form (12.1.29), with various forms for the convergence or conditioning
operator P. As shown in Section 12.1.3, this emphasizes a clear connection
between the behaviour of iterative schemes with the iteration number nand
that of time-dependent formulations where n is a time-step index. Hence if we
view n in this way, we can consider the general iterative scheme

P ~ = -",(SUn + Qn) = -",Rn (12.3.1) I

as the explicit Euler integration, with time step T, of the differential system

dUP - = - "'(SU + Q) (12.3.2)
dt

where we are only interested in the asymptotic steady state. The operator P can
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be chosen in an arbitrary way, with the only restriction that the amplification
matrix G

G = I - "'TP-1S (12.3.3)

should have all its eigenvalues lower than one, that is

p(G) ~ 1 (12.3.4)

In addition, we know from equation (10.1.17) that the operator (",P-1 S) must
have eigenvalues with positive parts for stability. The parameter T appears as a
pseudo-time step, which can eventually be absorbed by"" left as an additional
optimization parameter or simply set equal to one.

It is seen from equation (12.3.3) that for P = "'TS, G = 0, implying that we
have the exact solution in one iteration, but, of course, this amounts to the
solution of the stationary problem. Therefore the closer PI"'T approximates S,
the better the iterative scheme, but, on the other hand P has to be easily
solvable. Let us consider a few well~known examples.

12.3.1 Richardson method

This is the simplest case, where PIT = - 1. The choice (- 1) is necessary
because S has eigenvalues with real negative parts. For the Laplace equation
all the eigenvalues of S are negative. The iterative scheme is

Un+l = Un + ",(SUn + Qn) = (1 + ",S)Un + ",Qn
- G U n Qn (12.3.5)= R +'"

defining the iteration or amplification operator GR as GR = 1 + ",S. The

eigenvalues of GR satisfy the relations (where the eigenvalues OJ of S are
negative and real)

>,.,( GR) = 1 + ",OJ (12.3.6)

The parameter", can be chosen to damp selectivity certain frequency bands of
the O-spectrum but has to be limited for stability by the following condition,
for OJ real:

2 20 < '" < T~ = p(s) (12.3.7)

An optimal relaxation parameter can be selected, following Figure 12.3.1, as

2"'opt =
1 n I . In I (12.3.8) ilJ mm + ilJ max

The corresponding spectral radius of the Richardson iteration operator is

p(GR)= 1- 21~lmax= x(S)-I= 1- 2 (12.3.9)
IOJlmin+IOJlmax x(S)+1 x(S)+1
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'"

~ "'opt -1--
Ifl.Jlmox Ifl.Jlmin

Figure 12.3.1 Spectrum of Richardson relaxation operator
for real negative ()

where the condition number of the S matrix has been introduced:

x(S) = ~ (12.3.10)
10JImin

For the Laplace operator the eigenvalue (12.1.53) leads to

I OJ Imax = 8 I OJ Imin = 8 sin2 -.:!.-- ~ ~
2M N

and the condition number is

1 4N
x(S)=sin2(7f/2M)~? (12.3.11)

The approximate equality refers to the case of larger values of M. On a mesh
of 50 x 50 points, x(S) ~ 1000.

The convergence rate, equation (12.1.40), becomes, for large M,
2

p(GR) ~ l-iN~ 1-2/x(S) (12.3.12)

giving the same (poor) convergence rate as the point Jacobi method (see

equation (12.1.56».
We could improve the convergence properties by adopting a series of

different values of (AJ, such as to cover the whole range from III OJ Imax to
III OJ Imin, giving complete damping of the correspondence frequency com-
ponent ,OJ when (AJ = 111 OJ I (for real 0). Such a process, whereby (AJ changes
from one iteration to another, is called non-stationary relaxation. When (AJ is
constant, we deal with a stationary relaxation.

The selection of (AJ in a sequence of p values covering this range can be
optimized to yield the maximal convergence rate. This is realized when the
intermediate values of (AJ are distributed between the two extreme values
III OJ Imin and 1/1 OJ Imax, as the zeros of the Chebyshev polynomials (Young,
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1971; Marchuk, 1975):

1-= 10Jlmin+ 10JImax 10Jlmax-IOJlmin (~.?!: ) k = I 2 "'k 2 + 2 cos p 2 ' , ...,p

(12.3.13)
Observe that for anti-symmetric S matrices (S = - ST) the eigenvalues are

purely imaginary; for instance, the centrally discretized first space derivative
in the convection equations. In this case the eigenvalues of the Richardson
iteration matrix become equal to >'( OR) = I + /'1'0, and the iterative method
will diverge, since I >'( OR) I > I. This is in full agreement with the instability of
the Euler explicit scheme for the central differenced convection equation.

12.3.2 Alternating direction implicit (ADI) method

An effective iterative method is obtained by using, as conditioning operator P,
the ADI-space factorized operators described in Chapter II. Referring to
equation (11.4.16), the ADI iterative method is defined by

(I - TSx)(1 - TSy)(1 - TSz) ~Un = T",(SUn + Qn) (12.3.14)

and is solved in the sequence

(I - TSx) AU = T",(SUn + Qn)

(I-TSy)W=W (12.3.15)
(I - TSz) ~Un = W

With the matrix notations and conventions of equation (12.2.37)-(12.2.39) we
have, for a two-dimensional problem, Sx = D/2 + H, Sy = D/2 + V, and the

ADI iteration can be written as

[1- T(q+ H)] W= T",(SUn + Qn)

(12.3.16)

[1-T(q+ V)] ~Un=W

The parameters", and T have to be optimized in order to make the ADI
iterations efficient. For optimized parameters the convergence rate can be of
the order of N log N and is an order of magnitude faster than SOR. However,
the ADI method is difficult to optimize for general problems. A discussion of
this topic is to be found in Wachspress (1966), Mitchell (1969) and Mitchell

and Griffiths (1980).
It can be shown that an optimal value of '" is "'opt ~ 2. A guideline to

selections of T is

I
Topt = I

,;(OminOmax)
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or to distribute T in a sequence of p values covering the range of frequencies in
a selected direction. If the S matrix has the Fourier harmonics as eigenvectors
(for periodic conditions) then the eigenvalues of the different submatrices can
be obtained by the Von Neumann analysis. For the Laplace equation the
eigenvalues >'( OADI) are given by equations (11.4.27) for", = 1, but with", = 2,
we obtain, with Tl = T/ .6.x2,

>'(0 ) = (1 - 4Tlsin2t/>x/2) (1 - 4Tlsin2t/>y/2) (123 17)
ADI (1 + 4Tlsin2t/>x/2)(1 + 4Tlsin2tf>y/2) . .

The Am iterative method is clearly unconditionally stable for positive
values of T. If the frequencies in a given direction, say y, are selected to be
damped we can distribute T between the minimum and maximum values
associated, respectively, with the high-frequency t/>y ~ 7r and the lowest
frequency t/>y = 7r/M:

11M2(Tl)min ="4 (Tl)max = 4 sin2(7r/2M) ~ ? (12.3.18)

The sequence of T values could be distributed by a Chebysbev optimization,
for instance following equation (12.3.13). Another distribution law has been
applied by Ballhaus et al. (1979) to the computation of solutions to the
transonic potential flow equation

( ) k-IIP-l T=Tmin~ k=I,...,p (12.3.19)

Tmm

where p is taken between 5 and 10. Even with an approximate optimization,
the Am method is very efficient and generally requires less computational time
than point or line overrelaxations.

12.3.3 Other preconditioning techniques

All the matrices representing the relaxation methods can be considered as
preconditioning matrices. An essential guideline towards the selection of the
operator P is to be obtained from the generalization of equation (12.3.1)
defining the Richardson iteration. If we write the general form of the iteration
scheme as

Un+l = Un - "'TP-l(SUn + Qn) (12.3.20)

we can consider this method as a Richardson iteration for the operator
B = T p-l S, which is positive definite by definition of P. Hence the eigenvalues
of the iteration matrix 0 = 1 - T",P-1 S satisfy the relation

>'(0) = 1 - "'>'(TP-1S) (12.3.21)

An optimal relaxation parameter can be defined by

2
"'opt = >'min(Tp-1S) + >'max(Tp-1S) (12.3.22)
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and the spectral radius of G becom.es

(G) = X(TP-IS) - 1
(12.3.23)p X(TP-IS) + 1

The Richardson iteration has a poor convergence rate because of the very
high value of the condition number. In practical problems the mesh is often
dense in certain regions and, more importantly, not uniform. A large variation
in mesh spacing contributes to an increase in the condition number, and values
of 105 - 106 are not uncommon in large-size problems. On the other hand, a

condition number close to one leads to an excellent convergence rate. There-
fore various methods have been developed which aim at choosing P such that
the eigenvalues of T p-1 S are much more concentrated. We mention here a few
of them, referring the reader to the literature cited for more details.

Incomplete Choleskijactorization (Meijerink and Van Der Vorst, 1977, 1981,.
Kershaw, 1978)

During the LU factorization of the banded matrix S, elements appear in L
and U at positions where the S matrix has zero-elements. If an approximate
matrix P is defined formed by I and V, P= lv, where I and V are derived
from Land U by maintaining only the elements which correspond to the
location of non-zero elements of S, we can expect P to be a good approxim-
ation to S and that p(P-1 S) will be close to one. Hence I is defined by

hJ = lJJ if SIJ ~ 0 (12.3.24)

= 0 if SIJ = 0

and similarly for V. Since P is very close to S, the matrix p-IS= (IV)-ILU
will be close to the unit matrix and the condition number of P- I S will be

strongly reduced compared with the condition number x (S) of the S-matrix.
Hence >'(G) = 1 - p-IS will be small and high convergence rates can be

expected. When used with a conjugate gradient method, very remarkable
convergence accelerations on symmetric, positive definite matrices, have beep
obtained, Kershaw (1978).

The coupling with the conjugate gradient method is essential, since the P
matrix obtained from the incomplete Cholesky decomposition, although close
to unity, still has a few extreme eigenvalues which will be dominant at large
iteration numbers. The conjugate gradient method, when applied to this
preconditioned system, rapidly eliminates the extreme eigenvalues and corres-
ponding eigenmodes. We are then left with a system where all the eigenvalues
are close to one and the amplification matrix becomes very small.

Strongly implicit procedure (SIP) (Stone, 1968,. Schneider and Zedan, 1981)
This is also an incomplete factorization technique, based on the matrix
structure arising from the discretization of elliptic operators. The obtained
matrix is block tridiagonal or block pentadiagonal for the most current
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discretizations. The SIP method defines a conditioning matrix Pas P = L . U,
where U = L T for symmetrical matrices such that Land U have the non-zero

elements in the same location as the S matrix. A procedure is derived allowing
the determination of Land L T and the resulting system is solved by a forward

and backward substitution as

LW= -Rn
T n - (12.3.25)

L~U=~U

The Land L T matrices are obtained by a totally different procedure from the

Choleski factorization.

Conjugate gradient method (Reid, 1971; Concus et al., 1976; Kershaw, 1978)

This method, originally developed by Hestenes and Stiefel, is actually a direct
method, which did not produce the expected results with regard to conver-
gence rates. However, as an acceleration technique, coupled to precondition-
ing matrices, it produces extremely efficient convergence accelerations. When
coupled to the incomplete Choleski factorization the conjugate gradient
method converges extremely rapidly (see Golub and Meurant, 1983, and
Hageman and Young, 1981 for some comparisons on elliptic test problems).
However, they require more storage than the relaxation methods, and this
might limit their application for three-dimensional problems.

12.4 NON-LINEAR PROBLEMS

In a non-linear problem we can define a Newton linearization in order to enter
an iterative approximation sequence. If the non-linear system is of the form

S(U) = - Q (12.4.1)

the Newton iteration for Un + 1 is

S(Un+l)=S(Un+~U)=S(Un)+ (~). ~U:;: -Q (12.4.2)

where higher-order terms in ~U have been neglected. The Jacobian of S with
respect to U (also called the tangential stiffness matrix, Kr= as/au, in the
literature on finite elements) defines the iterative system

KT ~Un = - Rn (12.4.3)

In the linear case KT = S and equation (12.4.3) is identical to the basic system
(12.1.30). In the non-linear case the Newton formulation (12.4.3) actually
replaces the basic system (12.4.1). Indeed, close enough to the converged
solution, the higher-order terms can be made as small as we wish, and equation
(12.4.3) can therefore be considered as an 'exact' equation.

If equation (12.4.3) is solved by a direct method we would obtain the exact
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solution D as D = Un - Ki I Rn (12.4.4)

The error en = Un - D, with respect to this exact solution, satisfies the relation

KTen = Rn (12.4.5)

If system (12.4.3) is solved by an iterative method, represented by the

conditioning operator PI r,

!. AU= - Rn (12.4.6)
r

the error en will be amplified by the operator G, such that

en+1 = Un+1 - D= en + AU

=en-rp-1Rn (12.4.7)
= (1- rp-1KT )en = Gen

Hence for a non-linear system of equations we can consider that the
conditioning operator should be an approximation to the Jacobian matrix of

system (12.4.1).
The iterative scheme (12.4.6) will converge if the spectral radius of

G= 1- rp-1KT (12.4.8)

is lower than or equal to one. Equation (12.4.8) therefore replaces equation
(12.3.3) for a non-linear system. Actualy, since KT = S for linear equations,
equation (12.4.8) is the most general form of the amplification matrix of an
iterative scheme with operator PIT, applied to linear or non-linear equations.
Definition (12.4.8) therefore allows an analysis of convergence conditions for
non-linear systems when the Jacobian operator KT can be determined. An
example of such an investigation will be given in Chapter 13 of Volume 2,
dealing with the non-linear potential equation.

Constant and secant stiffness method

This denomination originates from finite element applications where the
following conditioning matrices are often used, essentially for elliptic equa-
tions.

Constant stiffness
P = S( UO) (12.4.9)

The convergence matrix P is taken as the operator S at a previous iteration and
kept fixed.

Secant stiffness

P= S(Un-l) (12.4.10)
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The Jacobian is approximated by the previous value of the matrix S( Un-I).
The systems obtained can be solved by any of the methods mentioned, direct
or iterative. In the former case we have a semi-direct method in the sense that
the iterations treat only the non-linearity.

12.5 THE DIFFERENTIAL EQUATION REPRESENTATION OF A
RELAXATION SCHEME

Since the matrix S originates from a space discretization of a differential
operator the submatricesE, For H, V, HL, VL, Hu, Vu can also be considered
as representing differential operators acting on U or ~U. Therefore the
left-hand side P ~U can be considered as the representation of some space
operator acting on ~Uor on the pseudo-time derivative dU/dt = ~Un/T. This

idea has been developed by Garabedian (1956) and leads to an interesting
interpretation of an iterative scheme as a modified time-dependent partial
differential equation, which can be investigated analytically for stability,
well-posedness and other properties.

Let us illustrate this on the Gauss-Seidel method (equations (12.1.22) and
(12.1.25)). The conditioning operator P = D + E represents a combination of
x and y derivatives whose detailed form depends on the particular problem
considered. For the Laplace operator, equation (12.1.22) is recast into the
form (12.1.25):

2~ulJ,+ (~IJ'-~ulJ- I ,) + (~ulJ '- ~ulJ '- I)'J '.J '.J '.J '.J (12.5.1)
( n n n n 4 n n )= Ui+l.j+Ui.j+I+Ui-l.j+Ui.j-l- uij+qij

The residual in the right-hand side is ~X2 times the discretized Laplace
operator and represents the differential equation Lu = j. On the left-hand side

the first bracket can be viewed as a backward space discretization in the
x-direction and the second as a similar operation in the y-direction. Therefore
introducing the pseudo-time derivative Ut = ~Un/T we can write this iterative
scheme as the following partial differential equation, with ~x = ~y:

(~) Ut + (tx) Uxt + (tx) Uyt = Lu - j (12.5.2)

representing the Gauss-Seidel method, where it is understood that the space
derivatives on the left-hand side are backward differenced.

This equation can be analysed by the methods of Chapter 3, via a
transformation to a system of three first-order equations, by introducing the
variables v = Ux, W = Uy, Z = u, and adding the equations Vy = Wx and Vt = Zx

(the subscripts indicate partial derivatives). The differential equation of the
iterative scheme is hyperbolic, as can be seen from the real eigenvalues of the
system (see Problem 12.6). However, a more straightforw.ard analysis can be
performed by introducing the transformation (Jameson, 1974)

T=t+ax+(3y (12.5.3)

-, --



487

where a = T/2~x and {J = T/2~y. Equation (12.5.2) is rewritten here as follows,
with -y = 2T/~X2:

-yUt + 2auxt + 2{Juyt = Uxx + Uyy - f (12.5.4)

Performing the transformation to the variables (T, x, y), via a transformation
such as

Ux => Ux + aUT
(12.5.5)

bt . Uxx => Uxx + 2auxT + UTT
we 0 am

-yUT+ (a2 + {J2)UTT= Uxx + Uyy - f (12.5.6)

Since this equation is clearly hyperbolic in the T -direction (which is a
characteristic direction) the coefficient -y of the first-order T derivative, which
provides the damping, must be positive.

A similar analysis can be performed for the SOR relaxation method
(equation (12.2.11», leading to the differential equation

2(2 - CJJ) ~uij + CJJ(~uZj - ~U7-1.j) + CJJ(~uij - ~UZj-l) = CJJ ~x2(Lu - f)

(12.5.7)

"or

2T(2 - CJJ) (CJJT) (CJJT)2 Ut + - Uxt + - Uyt = CJJ(Lu - f) (12.5.8)
~x ~x ~x

Compared to the above analysis we see that the positiveness of the coefficient
of Ut requires the relaxation coefficient to satisfy 0 < CJJ < 2.

From a differential point of view the conditioning matrix P represents the
differential operator

PSOR = 2T(2 - CJJ) + (!:!!:!..)~ + (!:!!:!..)~ (12.5.9)
~X2 ~x ax ~y ay

For the Jacobi line relaxation method along vertical y-lines, equation
(12.2.36), we have

4(~uZj- ~UZj+l - ~UZj-l) = CJJ(Lu - f) ~X2 (12.5.10)

or

2T
~ Ut-TUyyt=CJJ(Lu-f) (12.5.11)
~x

The line relaxation has lead to the appearance of a second derivative along the

selected lines in the.conditioning operator PJLR:

2T 02PJLR = --z - T -;-2 (12.5.12)
~x uy

Since the presence of the second derivative in P makes it closer to the
differential Laplace operator, which also contains a second derivative term, we
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can expect the line relaxation to be more effective in iteration counts than the
point overrelaxation. This is indeed the case in practice.

Applied to the VLOR method (equation (12.2.33» an additional Uxt term
appears in the left-hand side (see Problem 12.7). Actually, Figures 12.1.2 and
12.2.2 also explain the background of the derivative terms in P by the location
of the point taken at level (n + 1).

12.6 THE MULTI-GRID METHOD

The multi-grid method is the most efficient and general iterative technique
known today. Although originally developed for elliptic equations, such as the
discretized Poisson equation (Fedorenko, 1962, 1964), the full potential of the
multi-grid approach was put forward and systemized by Brandt (1972, 1977,
1982). It has recently been applied with great success to a variety of problems,
ranging from potential equations to Euler and Navier-Stokes discretizations,
and is still subject to considerable research and development. A collection of
reports on the basics of multi-grid methods and some selected applications can
be found in Hackbusch and Trottenberg (1982), Hackbusch (1985).

The multigrid method has its origin in the properties of conventional
iterative techniques, discussed in the previous section, in particular, their
asymptotic slow convergence because of the poor damping of the low
frequency errors (long wavelengths). Indeed, as can be seen from equations
(12.1.48) and (12.1.50), the asymptotic behaviour of the error (or of the
residual) is dominated by the eigenvalues of the amplification matrix close to
one (in absolute value). These are associated with the eigenvalues of the
space-discretization operator S with the lowest absolute value. For the Laplace
operator, for instance, the lowest I OJ Imin is obtained from equation (12.1.53)
for the low-frequency component <Px = <py = 7rIM.

We can therefore consider, on a fairly general basis, that the error
components situated in the low-frequency range of the spectrum of the
space-discretization operator S are the slowest to be damped in the iterative
process. On the other hand, the higher frequencies are the first to be reduced
and, after a few iterations, a large part of the high-frequency error com-
ponents will generally be damped (Figure 12.6.1). As a consequence, an
iterative method with these properties will act as a smoother of the error in
such a way that after one or more iteration sweeps through the mesh (also
called relaxation sweeps) the error behaviour is sufficiently smooth for it to be
adequately represented on a coarser mesh.

The basic idea of multi-grid methods is as follows:

(1) Apply one or more sweeps of an iterative method with good smoothing
properties of the higher-frequency components. .

(2) Transfer the problem to a coarser grid, where an approximation to the
correction d U is obtained at a reduced computational cost, since there are

Ifewer mesh points.

j



489

Error

Error after smoothing

tdJoJ.J\,I\i'I"b'\"\'<b~
x

Figure 12.6.1 Smoothing of the error by relaxation sweeps

(3) Transfer the corrections obtained to the fine grid in order to generate a new
approximation of the solution.

These different steps will be defined more precisely in the following, but it
should be clear that error smoothing on the fine mesh is the essential property
of multi-grid methods.

Another view of this essential requirement to the effectiveness of multi-grid
methods can be obtained by noting that the high-frequency components are
not visible on the coarse mesh. Therefore they have to be reduced in
magnitude, compared to the low-frequency components, in such a way that
the remaining, smoothed error can be represented by the frequency modes
visible on the coarse mesh. In a one-dimensional space of length L, divided
into M cells, with ~x = L/ M, the visible frequencies range from <t> = 11"/ M to
<t> = 11", associated with the wavelengths from 2~x to 2L. If a coarse mesh is
defined by removing every second point, the shortest wave that can be
represented on this mesh is 4~x, corresponding to a highest frequency defined
by <t> = 11"/2. Hence the whole range of wavenumber variables <t> = 211" ~x/ A,
where A is the iwavelength" situated between 11"/2 and 11", cannot be represented
on the coarse mesh of mesh size (2~x). On the other hand, the components
associated with the low-frequency range <t> = [1I"/M, 11"/2 [ are well represented
on the coarse mesh (Figure 12.6.2).

x

i

Figure 12.6.2 Visible and invisible modes on coarse mesh
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12.6.1 Smoothing properties

The smoothing qualities of an iterative (relaxation) method can be estimated
by evaluating the maximum eigenvalues of the amplification matrix in the
high-frequency domain of the associated wavenumber variable cP[1I"/2,1I"].
In two dimensions the high-frequency domain is defined by the region
11"/2 ~ I cPx I ~ 11" and 11"/2 ~ I cPy I ~ 11" (Figure 12.6.3) when the Fourier modes
are considered, with a coarsening whereby every second point is removed
along the co-ordinate lines. This is the so-called standard coarsening. Hence
the smoothing factor It is defined by

It = Max I >-'(G) I (12.6.1)
f~ l.pl~..

For instance, the Jacobi method applied to the Laplace operator has the
eigenvalues (12.1.54), which take on the value -1 for cPx = cpy = 11". Therefore

).

H 11+

0 Coarse mesh points

"'-

-I

'ily

High-frequency" domain

,,/2

-" -,,/2 ,,/2 '"

'ilx

-,,/2

Low-frequency
domain

-"

Figure 12.6.3 Low- and high-frequency domains for two-
dimensional problems
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the smoothing factor (12.6.1) is equal to one, indicating that some high-
frequency error components are not damped. As a consequence, the Jacobi
method is not a valid smoother. However, with relaxation methods we can
select the relaxation coefficient, "', in order to optimize the high-frequency
damping properties. With equation (12.2.8) the smoothing factor for Jacobi
overrelaxation becomes, introducing the extreme eigenvalues A( OJ) = - 1 and

+ 1/2 in the high-frequency domain,

,it(OJ("'» = Max[11 - ",/21,11 - 2",)] (12.6.2)

This is illustrated in Figure 12.6.4, where the optimum relaxation coefficient
'" = 4/5 gives the lowest smoothing factor of 0.6, showing that after four
iterations the high-frequency components will be damped by nearly one order
of magnitude.

The Gauss-Seidel iterative method leads to a still better smoothing factor
for the Laplace operator, since we obtain ,itGS = 0.5 (Hackbusch and Trot-
tenberg, 1982). Here, an order of magnitude reduction in high-frequency error
components is achieved after three iterations. All the iterative methods can be
analysed for their smoothing properties, and the reader will find more
information in the above-mentioned literature.

In general, the smoothing factor may depend on the number of relaxation
sweeps performed and also on the definition of the coarse mesh points with
respect to the fine mesh, For the Laplace operator on a uniform mesh we can
compare various line relaxation methods for Jacobi or SOR, as well as
Red-Black, Zebra and other variants. The following values are obtained
(Hackbusch and Trottenberg, 1982):

Line Jacobi relaxation 0.6
Line Gauss-Seidel 0.447
Red-Black point relaxation ('" = 1) 0.25
Zebra line relaxation 0.25
Al . Zb 0048 !,ctematmg era . ""-,,,

,:'?l,;~j~fi!fi:~~ ,
Unstable -':",c

1 -'
:1' {~}.

- ~

06

0.5 0.8 1 15 2

Figure 12.6.4 Smoothing factor for Jacobi overrelaxation
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Red-Black relaxation has a smoothing factor which increases with the number
of iterations. This is due to the coupling between high and low frequencies
introduced by the red-black sequences, and consequently there is no gain in
increasing the number of relaxation sweeps in this case. Note the excellent
smoothing properties of alternating zebra line relaxation.

12.6.2 The coarse grid correction (CGC) method for linear problems

After a few relaxation sweeps the remaining error is expected to be sufficiently
smooth to be approximated on a coarser grid, with 2flx, for instance, as basic
step size. The procedures for generating this coarse grid correction are the
building blocks of the multi-grid method.

The fine mesh, on which the solution is sought, will be represented by h,
which will also be used as a sub- or superscript in order to indicate the mesh on
which the operators or the solutions are defined. Similarly, the coarse mesh
will be designated by H. Both hand H also designate representative mesh
sizes, with H> h. For instance, H = 2h when every second mesh point is
removed in the standard coarsening, as shown in Figure 12.6.3.

We consider the linear problem on the fine mesh h:

Sh Uh = - Qh (12.6.3)

and an iterative scheme under the residual form (12.1.29):

P flUh = - Rh (12.6.4)

Actually, the coarse grid correction method consists of selecting P propor-
tional to the basic operator S defined on the coarse mesh. This process involves
three steps:

(I) The transfer from the fine to the coarse grid, characterized by a .
restriction operator If. This operator defines the way the mesh values on
the coarse grid are derived from the surrounding fine mesh values. In
particular, the residual on the coarse grid, RH, is obtained by

RH = If Rh (12.6.5)

(2) The solution of the problem on the coarse mesh:

SHUN = - QH (12.6.6)

or i

SHflUH=-RH (12.6.7)

(3) The transfer of the corrections flUH from the coarse mesh to the fine one.
This defines an interpolation or prolongation operator I~:

flUh = I~ flUH (12.6.8)
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Restriction operator

Let us consider a one-dimensional mesh and a second-order derivative
discretized by the central difference operator, h = ~x:

1Rh = h2 (Ui+l- 2Ui + Ui-l) + qi (12.6.9)

where i represents the fine mesh points (Figure 12.6.5). In order to relate i to
the coarse mesh points, obtained by removing every second point, we will set
i=2k. The coarse mesh points are then designated by k-l,k,k+ 1,...
Hence equation (12.6.9) becomes, for constant q,

1
Rh=Z(UZk+I-2uZk+UZk-I)+q (12.6.10)

h

The full weighting restriction operator is defined by the distribution of
Figure 12.6.5 such that each coarse mesh point receives a contribution from
itself and the two neighbouring fine mesh points, weighted, respectively, by the
factors 1/2,1/4,1/4. For consistency, the sum of the weighting factors should
always be equal to one.

The coarse mesh residual RH is obtained by

RH= If;lRh (12.6.11)

leading to

1RH = 4"ji2 (Uk-I - 2Uk + Uk+l) + q (12.6.12)

which is the discretization of the second derivative on the coarse mesh. This
restriction operator is represented here by a matrix M/2 x M, where M is the
number of cells in the fine mesh:

2k - 1 2k 2k + 1
. . . . . . . . .

k- 1 1/4 1/2 1/4 . . .
If;I = k .. 1/4 1/2 1/4 . (12.6.13)

k+ 1 .. 1/4 1/2 1/4
. . .

Fine mesh 2k-2 2k 2k+2
I I I I I I I I I I I I I

/\'12/\@ 1'/4~'/4\
I I I I I I

Coarse mesh k-1 k k+'

Figure 12.6.5 Reslriction operator for one-dimensional problem
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11

H

1/16* 1/4*

Injection Full weighting Holf weighting

Figure 12.6.6 Restriction operator in two dimensions on a uniform mesh

Another choice is referred to as simple injection, whereby the coarse mesh
functions are taken equal to their fine mesh value:

II;' = 1 for all 2k fine mesh points

. .. 0 1 0 .

11;'= 0 1 0 . . . (12.6.14)
0 1 0 .

. . . . . .

In two dimensions the simple injection is represented by the molecule in
Figure 12.6.6(a), where the central coarse mesh point is shown surrounded by
its fine mesh neighbours. The number inside the circle shows the local weight
factor between the fine and coarse mesh functions in this point. Full weighting
restriction is shown by the molecule in Figure 12.6.6(b), while a half-weighting
restriction operator is indicated in Figure 12.6.6(c).

Prolongation operator

Prologation or interpolation operators are generally defined by tensor pro-
ducts of one-dimensional interpolation polynomials of odd order, such as the
linear (or cubic) finite element interpolation functions. For the previous
one-dimensional example of Figure 12.6.5 a linear interpolation would lead to
the representation shown in Figure 12.6.7. This is represented by a matrix
M x M/2:

k-1 k k+1
. . .

I" =. . 0 1/2 1/2 . . 2k-1
(126 15)H . 0 0 1 0 2k . .

.. . 1/2 1/2 . 2k+ 1

Generalized to a uniform two-dimensional mesh, we obtain the molecule
shown in Figure 12.6.8.



495

Fine mesh 2*-2 2* 2*+2
I I I I I I I ,1 I I I I I

@ 1/~ t~/2Coarse mesh 2 \V'/

I I I I I I
*-1 * * + 1

Figure 12.6.7 One-dimensional prolongation operator

1\4*
0 Coarse mesh points

X Fine mesh points

Figure 12.6.8 Two-dimensional interpolation operator

Coarse-grid correction operator

Combining the three steps mentioned above, the conditioning operator for the
coarse-grid correction method PCGc:

PCGC ~Uh= -Rh (12.6.16)

is obtained by combining equations (12.6.5), (12.6.7) and (12.6.8), leading to

~U" = I~ ~UH

=I~SH-lRH (12.6.17)
= - I~ Sill I{;l R"

Hence

Pc6c = I~ SilII{;l (12.6.18)
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The amplification matrix associated with equation (12.6.16) is defined by

UC+I = GCGcUZ - Pc6cQ (12.6.19)

with

GCGC = 1 - ~~~C;hH (12.6.20)

= 1-IHSiI Ih Sh

It is assumed here that the problem is solved exactly on the coarse grid H, that
is, that Sill can be evaluated exactly.

12.6.3 The two-grid iteration method for linear problems

The multi-grid method on the two grids h, H is now completely defined when
the smoothing is combined with the coarse-grid correction. Hence the two-grid
iteration method is obtained by the following sequence:

(1) Perform nl relaxation sweeps with smoother SI on the fine mesh solution
UZ.

(2) Perform the coarse-grid correction, obtaining UC+ I = UZ + d Uk.
(3) Perform n2 relaxation sweeps with a smoother S2 on the fine-mesh

solution UC+I.

Denoting by Gh.H the amplification matrix of the two-grid iteration method
and Gs the amplification matrix of the relaxation method selected as a
smoothing operator, we obtain

n, n, n, h~S-1 H s JGn, (126 21)Gh.H = GS2 . GCGC' GSI = Gs2[1 - IH H Ih h SI . .

Typical values for nl,"'2 are one or two, and the smoot hers 8J and 82 may be
different. For instance, when an alternating line relaxation technique (one of
the most efficient smoothers for elliptic equations) is applied 81 could be
connected to the horizontal lines and S2 to the vertical ones. Another option is
to modify the values of some relaxation coefficients between 81 and 82.

Convergence properties

The two-grid method will converge, if the spectral radius of Gh.H is lower than
one:

p( Gh.H) < 1 (12.6.22)

The convergence properties of the two-grid method can be analysed on simple
problems, such as the Poisson equation and uniform meshes by a Fourier-
Yon Neumann method, whereby the eigenvalues of the different operators in
equation (12.6.21) are determined. Examples of this approach can be found in
Hackbusch and Trottenberg (1982), where the spectral radius p( Gh.H) is
obtained for various combinations and choices of the operators in equation
(12.6.21).
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The two-grid method has remarkable convergence properties, which have
been proved by Hackbusch (see Hackbusch and Trottenberg, 1982,
Hackbusch, 1985), for a rather large class of problems. Namely, the asymp-
totic convergence rate is independent of the mesh size h, that is, independent
of the number of mesh points. Hence the computational work in a two-grid
method is determined essentially by the work required to perform the
smoothing steps. Since the relaxation sweeps require a number of operations
proportional to the number of fine mesh points N, the total work will vary
linearly with N.

12.6.4 The multi-grid method for linear problems

In the\two-grid method the solution step on the coarser grid, that is, obtaining
~UH from equation (12.6.7), is assumed to have been performed accurately.
In the multigrid approach this solution is obtained by application of another
two-grid iteration on a coarser grid, for instance a grid of size 2H = 4h. This

can be repeated for the solution of equation (12.6.7) on the grid 2H, and so
on. The multi-grid method is therefore defined on a succession of increasingly
coarser grids, applying recursively the two-grid iteration, whereby the 'exact'
solution of equation (12.6.7) has only to be obtained on the last, very coarse,
grid.

Usually, four to five grids are used and various strategies can be chosen in
the sequence of transfer and smoothing between successive grids. The V -cycle,
shown in Figure 12.6.9(a), consists of a succession of smoothing (symbol 0)
and transfer to the next coarser grid, with a unique exact solution (symbol D)
on the coarsest grid, followed by a unique sequence of transfer and smoothing,
back to the finest grid. In the W -cycles intermediate V -cycles are performed on
the coarser grids, as shown in Figure 12.6.4(b), where 'Y indicates the number
of internal V-cycles.

The amplification matrix of the multi-grid operator is obtained from

(a) V-cycle (1=1) (b) W-cycle (1=2)

D Exact resolution

0 Smoothing

Figure 12.6.9 Multigrid strategies on a four-grid method
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equation (12.6.21) by replacing Sill in Gh,H by

Sill => (1 - GH,2H ) Sill (12.6.23)

and performing the same replacement for the operator su} appearing in GH,2H
until the coarsest grid is reached.

It can be shown that the convergence properties of the two-grid method also
apply to the multigrid approach, under fairly general conditions, namely the
mesh-size independence of the convergence rate. Therefore the computational
work of a multi-grid cycle is essentially dominated by the number of
operations required for the two-grid computation from the finest to the next
grid. Hence the total work will remain proportional to the number of mesh
points N of the fine grid. Note that W-cycles are roughly 50% more expensive
than V -cycles, but are generally more robust and should be preferred,
particularly for sensitive problems.

Other iterative techniques require a number of operations for an error
reduction of one order of magnitude, of the order of N3/2 (optimal SOR) or
N5/4 for preconditioned conjugate gradient methods, against N for the

NACA0012 M1= .8000 .M2= 8000

1.00

.750

NACA0012 100
500

M=8000

10-1
250

1:
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:Q 10-2- § .

G

~ -250 g 10-3
'" 'C
G .-
~ '"

a. G

0:

.500 10-4

-.750 5

Itd 4d 10-mu Igrl, grl s. .. . . .
multMJrid,3grids 1.00 multigrid,2grids (b) grid refining,4 10-6

(0) grids

1.25

. ... O. 500 100. 150.

Percent ctn'd Work units

Figure 12.6.10 Multigrid solutions for transonic flow over a NACA 0012 airfoil at Mach number

0.8. (a) Convergence history of the solution; (b) convergence history of the residuals. The numbers

indicate the average convergence rate
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multi-grid approach. Hence multi-grid methods are optimal in convergence
rates ~nd operation count and are considerably more general than the so-called
fast solvers, which are the best performing direct methods, when they apply.

An additional advantage of multi-grid methods, which appears in practice,
is the extremely rapid way the solution approaches its final shape after only a
very few multi-grid cycles. This is actually a consequence of the fact that the
errors are damped over the whole frequency range in every cycle, when passing
from the finest to the coarsest grid and back. With other methods the high
frequencies are generally first damped, then progressively, as the number of
iterations increases, an increasing number of frequencies in the medium and
lower range of the spectrum are treated and removed. With the multi-grid
method the whole spectrum is scanned during each cycle. An example of this
behaviour is shown in Figure 12.6.10 (from Deconinck and Hirsch, 1982) for a
potential flow computation over an airfoil in the transonic regime, with
multi-grid cycles of four grids.

Figure 12.6.10(a) shows the evolution of the surface Mach number,
containing a shock, from the first to the thirteenth multi-grid cycle, after which
it cannot be distinguished on the drawing from the final converged solution.
After one single cycle we are already very close to the overall shape of the
converged solution. Figure 12.6.10(b) compares the convergence rates of the
residual for a line relaxation SLOR iterative method and the multi-grid with
two, three "and four grids. The numbers indicated represent the average
convergence rate of the residuals and are an approximation of the spectral
radius of the multi-grid amplification matrix. One work unit on the horizontal
scale corresponds to one SLOR iteration on the fine grid. The improvement
with respect to SLOR is spectacular, and we can also notice the influence of the
number of grids on the overall convergence rates. Note that these computa-
tions have been performed for a non-linear problem by the method presented
in the following section.

12.6.5 The multi-grid method for non-linear problems

For non-linear problems the multi-grid method can be applied in association
with a linearization process such as the Newton linearization (equation
(12.4.3». However, we can also adapt the multi-grid approach directly to the
non-linear equations by operating simultaneously on the residuals Rh and on
the solution Uh itself, instead of the corrections AUh. This is known as the full
approximation scheme (FAS), Brandt (1977).

Considering the non-linear problem on mesh h,

Sh(Uh) = - Qh (12.6.24)

the two-grid non-linear F AS solves for U;:ew = (Uh + A Uh), solution of

Sh(Uh + AUh) - Sh(Uh) = - Rh, (12.6.25)

by a transfer to a coarser grid H.
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After nl relaxation sweeps on Uh a transfer of residuals and of the solution
Uh to the coarse grid is defined by two restriction operators If;I and if;l:

RH = If;I Rh (12.6.26)
AH

UH= Ih Uh (12.6.27)

These restriction operators may be different, since they are operating on
different spaces. Hence on the coarse grid H, equation (12.6.25) becomes

SH(UH + ~UH) - SH(UH) = - RH (12.6.28)

or

SH(UfleW) = - If;lQh + SH(if;lUh) - If;lSh(Uh) (12.6.29)

In the multi-grid method equation (12.6.29) is solved by subsequent transfer to
a next coarser grid. On the final grid this non-linear equation has to be solved

exactly.
When transferring from the coarse to the fine grid a prolongation operation

is applied to the corrections ~ Uk, defined by

~UH = U7!w - UH (12.6.30)

leading to

~Uh = I~ ~UH (12.6.31)

and to the fine grid solution

U/:ew = Uh + I~ ~UH (12.6.32)

The multi-grid cycle is closed after performing nz smoothing relaxation sweeps
on the new solution U/:ew.

In the full approximation scheme no global linearization is required, except
on the coarsest mesh and for the local linearizations of the relaxation sweeps.
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PROBLEMS

Problem 12.1

Write the discretized equations for the nodes close to all the boundaries for the Poisson
equations (12.1.1) and (12.1.2) based on Figure 12.1.1. Repeat the same exercise for
Von Neumann conditions along the boundary j = 0 (y = 0), of the form

au
-=g y=O
ay

by applying a one-sided difference.

Problem 12.2

Consider the stationary diffusion equation auxx = q in the domain 0 ~ x ~ I and the
boundary conditions

x = 0 u(O) = 0
x=1 u(I)=O

with qla = - 4. Apply a central second-order difference and solve the scheme with the
tridiagonal algorithm for ~x = 0.1 and ~x = 0.02 and compare with the analytical
solution.

Problem 12.3

Solve Problem 12.2 with the Jacobi method. Write the matrices D, E, F as tridiagonal
matrices B(a, b, c).

Problem 12.4

Solve Problem 12.2 with the Gauss-Seidel method and compare the convergence rate
with the Jacobi method.

Problem 12.5

Obtain the eigenvalue )'(GADI) of equation (12.3.17) for the ADI preconditioning
operator.

Problem 12.6

Analyse the properties of the differential equation (12.5.2) representing the Gauss-
Seidel iterative method, following the method described in Chapter 3.

Problem 12.7

Derive the differential equation representing the VLOR method of equation (12.2.33).
Show that

7(2-",) ("'7 ) a al PSLOR = ~Xl + ~ a:; - 7 a}:2
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Problem 12.8

Consider the steady-state convection-diffusion equation

au a2u
Q-=a-

ax ax2

discretized with second-order central differences. Write explicitly the tridiagonal system
obtained and apply a Gauss-Seidel method. Derive the equivalent differential equation
and define the associated stability conditions.
Hint: Show that we obtain PUt = auxx - QUx with

~J P=~ (1 - ~ .!!.-)~X2 2a ax
and explain that P > 0 is necessary for stability, leading to a > 0 and
Q ~x/a < 2.

Problem 12.9

Repeat Problem 12.8 with a SOR method. Show that in this case

P = ~ [~ - ~ .!!.-
]~X2 UI 2a ax

for SOR.

Problem 12.10

Solve the Poisson equation

~U = -271"2 sin 7I"X sin 7I"Y

on a square 0 ~ x ~ 1 with the homogeneous Dirichlet boundary conditions, U = 0, on
the four sides. Define a five-point discretization on a rectangular mesh. Consider a
11 x 11 mesh and solve with a Jacobi iteration. Compare the convergence rate with the
same computation on a 21 x 21 mesh. Compare the results with the exact solution
u=sin 7I"xsin 7I"Y.

Problem 12.11

Repeat Problem 12.10 with a Guass-Seidel iteration and compare the convergence
rates and computational times.

Problem 12.12

Repeat Problem 12.10 with a SOR method and compare the convergence rates and
computational times. Try different values of the over relaxation parameter.

Problem 12.13

Repeat Problem 12.10 with a line SOR method and compare the convergence rates and
computational times. Try different values of the overrelaxation parameters.

Problem 12.14

Repeat Problem 12.10 with a SSOR method and compare the convergence rates and
.computational times. Try different values of the overrelaxation parameter.
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Problem 12.15

Repeat Problem 12.10 with a Zebra line relaxation method and compare the conver-
gence rates and computational times. Try different values of the over-relaxation
parameter.

Problem 12.16

Repeat problem 12.10) with an AD! method and compare the convergeli)ce rates and
computational times. Try different values of the overrelaxation parameter.

Problem 12.17

Consider the alternative definition of a line overrelaxation method, where the inter-
mediate values are obtained with the fully updated values in the right-hand side. Instead
of equations (12.2.33) and (12.2.34), define

n+l 1 ( n n+l n+1 n+l ) 1 n
Uij =4-.!!:-.!.:!:-I.J+Ui-I.J+Ui,J-I+Ui,J+I +4qiJ

n+l n+l +(1 ) n UiJ = (IIUij - (II Uij

or, in incremental form,

4~U!"-(II~U!"- I -(II~U!" +I -(II~U!'- 1 '=(IIR~'.'J '.J ',J , ,J 'J

Derive the generalized form of this scheme and compare with equation (12.2.44).
Derive the differential equation for this scheme and compare with Problem 12.7.

Show that

p=T(4-3(11)+ ( !!?!.. ) ..!!.--(IIT~

~X2 -n.x ax ay2
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Appendix

Thomas Algorithm for Tridiagonal
Systems

A.I SCALAR TRIDIAGONAL SYSTEMS

For tridiagonal systems the LV decomposition method leads to an efficient
algorithm, known as Thomas's algorithm. For a system of the form

akxk-l+bkXk+CkXk+I=!k k=I,...,N (A.I)

with

al = CN = 0 (A.2)

the following algorithm is obtained.

Forward step

{31=bl {3k=bk-ak-
{3Ck-1 k=2,...,N
k-1

(A.3)
-A _(-ak'Yk-I+!k) k - 2 N'YI-{31 'Yk- {3k - ,...,

Backward step

XN = 'YN

(A.4)
Ck

Xk='Yk-Xk+l~ k=N-I,...,1

This requires, in total, 5N operations.
It can be shown that the above algorithm will always converge if the

tridiagonal system is diagonal dominant, that is, if

Ibkl~lakl+lckl k=2,...,N-I
(A.5)

Ibll>lcllandlbNI>laNI

If a, b, C are matrices we have a block-tridiagonal system, and the same
algorithm can be applied. Due to the importance of triadiagonal system, we

505
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present here a subroutine which can be used for an arbitrary scalar tridiagonal
system.

Subroutine TRIDAG

SUBROUTINE TRIDAG (AA,BB,CC,FF,N1,N)

C
C*********************************************************************
C SOLUTION OF A TRIDIAGONAL SYSTEM OF N-N1+1 EQUATIONS OF THE FORM
C
C AA(K)*X(K-1) + BB(K)*X(K) + CC(K)*X(K+1) = FF(K) K=N1,.. .,N

C
C K RANGING FROM N1 TO N
C THE SOLUTION X(K) IS STORED IN FF(K)
C AA (N1) AND CC (N) ARE NOT USED
C AA,BB,CC,FF ARE VECTORS WITH DIMENSION N, TO BE SPECIFIED IN THE
C CALLING PROGRAM
C*********************************************************************
C

DIMENSION AA(l),BB(l),CC(l),FF(l)

BB(N1)=1./BB(N1)

AA(N1)=FF(N1)*BB(N1)
N2=N1+1
N1N-N1+N

DO 10 K-N2,N

K1=K-1
CC(K1)=CC(K1)*BB(K1)

BB(K) =BB(K)-AA(K)*CC(K1)

BB(K) =l./BB(K)

AA(K) =(FF(K)-AA(K)*AA(K1»*BB(K)
10 CONTINUE

C
C BACK SUBSTITUTION
C

FF(N)-AA(N)
DO 20 K1=N2,N

K=N1N-K1

FF(K)-AA(K)-CC(K)*FF(K+1)
20 CONTINUE

RETURN
END

A.2 PERIODIC TRIDIAGONAL SYSTEMS

For periodic boundary conditions, and a tridiagonal matrix with one in the
extreme corners as in equation (10.2.12), the above method does not apply.
The following approach leads to an algorithm whereby two tridiagonal
systems have to be solved.

If the periodic matrix Bp( ii, E, c) has (N + 1) lines and columns resulting
from a periodicity between points 1 and N + 2, the solution X is written as a
linear combination X= X(I) + XN+IX(2), or

Xk = xkl) + Xk2) . XN+ I (A.6)
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where xkl) and xk2) are solutions of the tridiagonal systems obtained by
removing the last line and last column of Bp, containing the periodic elements.
If this matrix is called B(N)(a, E, c) we solve successively, where the
right-hand side terms Ik are put in a vector F:

B(N)(a, E, C)X(I) = F (A.7)

and

B(N)(a, E, C)X(2) = G (A.8)

with

GT=(-OI,...,O, -CN) (A.9)

The last unknown XN+ I is obtained from the last equation by back-
substitution:

I" (I) 0)
_IN+I-CN+IXr -ON+IXN (AIO)XN+ I - L . - ..(2). - ..(2) .

bN+I + ON+IXN + CN+IXr

The periodicity condition determines XN + 2 as

Xn+2 = XI (A.II)

The svbroutine TRIPER, based on this algorithm is included here. Note that
if the periodicity condition is

XN+2 = XI + C (A.12)

then the periodicity constant C has to be added to the right-hand side of the
last instruction, defining FF(N + 2).

Subroutine TRIPER

SUBROUTINE TRIPER(AA,BB,CC,FF,Nl,N,GAM2)

C
C*********************************************************************
C SOLUTION OF A TRIDIAGONAL SYSTEM OF EQUATIONS WITH PERIODICITY
C IN THE POINTS K-Nl AND K~N+2
C
C AA(K)*X(K-l) + BB(K)*X(K) + CC(K)*X(K+l) = FF(K) K=Nl, ...,N+l

C
C THE ELEMENT IN THE UPPER RIGHT CORNER IS STORED IN AA(Nl)
C THE ELEMENT IN THE LOWER LEFT CORNER IS STORED IN CC(N+l)
C AA,BB,CC,FF,GAM2 ARE VECTORS WITH DIMENSION N+2, TO BE SPECIFIED
C IN THE CALLING PROGRAM
C GAM2 IS AN AUXILIARY VECTOR NEEDED FOR STORAGE
C THE SOLUTION IS STORED IN FF
C*********************************************************************

C
DIMENSION AA(1),BB(1),CC(1),FF(1),GAM2(1)

BB(Nl)=l./BB(Nl)
GAM2 (Nl)=-AA(Nl) *BB(Nl)

AA(Nl)=FF(Nl)*BB(Nl)
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N2=N1+1
N1N=N1+N

DO 10 K=N2,N

K1-K-1
CC(K1)=CC(K1)*BB(K1)

BB(K) =BB(K)-AA(K)*CC(K1)

BB(K) =l./BB(K)
GAM2 (K)=-AA(K) *GAM2 (K1)*BB(K)

AA(K) =(FF(K)-AA(K)*AA(K1»*BB(K) ( ,;..,:;;11
10 CONTINUE

GAM2 (N)=GAM2(N)-CC(N) *BB(N)

C
C BACK SUBSTITUTION fJ:t

C
FF(N)=AA(N)

BB(N)=GAM2(N)
DO 20 K1=N2,N ': :
K=N1N-K1 .'-

K2=K+1

FF(K)-AA(K)-CC(K)*FF(K2)

BB(K)=GAM2 (K)-CC(K) *BB(K2)
20 CONTINUE

C
K1=N+1
ZAA=FF(K1)-CC(K1) *FF(N1)-AA(K1) *FF(N)

ZAA=ZAA/(BB(K1)+AA(K1) *BB(N)+CC(K1) *BB(N1»

FF(K1)=ZAA

DO 30 K=N1,N

FF(K)=FF(K)+BB(K)*ZAA
30 CONTINUE

C
FF(N+2)=FF(N1)

RETURN

END

.' ~'(J" ,-,:,' , , "

',.,', "." .~ ... """'~'" ..

"c;, ,;" 0, ",;:;, c\i., "(0

c" ~,'"

':.. , .? .

..!",,~-!;!;~l~~~!rf'cli

'0 ~'~~,~~:;:"'i::i,,:::

, ""';"::~:~,:l"'i:; . , 1,ri:'. ;, ~t,';;t:f!;",t{'*~,r:"c "C'i "(C"'",

!e: 'f (". :"c

(iJ1lm;"- II!'- ~. j"';';'

:;,,;;r'.i!:':'-'l,;" :;';: .
i"":"'i;~



;.. , ""~

i ;,
: c

- .(;,.;

cf.

Index

Accuracy 161, 166, 265, 274, 275 Brailowskaya method 433
order of accuracy 161, 164, 198,219, Briley and McDonald method 436

272,276,278,342,346,354, Burger's equation 269, 326, 327, 360,
356,432 361,364,365,436,437

ADl method 424, 437, 439, 440, 442,
457, 481 Cauchy problem 153, 409

Algebriac system 161, 163,421,456, Cebeci-Smith model 50, 51, 56c~\\-c~..\-nd fw~."..I\i
500 Centrifugal force 17 14"f, 24-

Aliasing phenomenon 325 Characteristic direction 146-149
Amplification factor of numerical normal 135-152

scheme 287, 296, 336, 375, 379, polynomial 377, 391, 393, 394, 425,
401,402,409,447 426,428,432,446

of differential equation 301, 343, 346, speed 150
374,375 surface 135-152

Amplification matrix 296, 336 Circulation 109-110
of iterative method 463, 464, 466, Circular cylinder, flow over 33-44

468,470,471,478 Clebsch representation 100-107
Amplitude error 303, 353, 380, 444 Collocation 203, 223
Approximate factorization (see Compact differencing formula 183-186

Factorization) Compatibility relations (equations)
Approximation level (see Level of 143-148

approximation) Condition number 373, 479
Artificial dissipation (viscosity) 324, 326, Conditional stability 274, 286

357, 397, 398, 399 Conditioning operator (see Convergence
A-stability 423, 427, 429 operator)
Averaging procedures for turbulent flow Conforming element 205

(see Turbulent flow) Conjugate gradient method 457, 484
Conservation form 13, 19,88,108,139,

Banded matrix 382 237, 238
Beam and Warming scheme 359, 360, Conservation law 8, 12, 221, 223, 237,

426,430,431,436,437 238
Boundary conditions 153, 156, 267, 268, differential form 10

408,409,410,412,413,442 for mass 12
Dirichlet 155,406,442,447,448,458, for momentum 14,15,16,17

468 for energy 18,24,111
Neumann 155, 381, 383, 385, 457 general form 10, 13
periodic 370, 376, 382, 385, 388, 393, integral form 10

468 scalar 9
Boundary layer approximation 63, 64, vector 11

75, 78, 79 Conservative discretization (scheme)
Boundary-layer equations 154, 155 237-241
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Conservative discretization (scheme) Discretization error 248, 265, 276-278,
(cont.) 301

variables 29,88 operator 290, 296
Consistency (condition) 267,275,276, Dispersion error 303,317,344,346,

277,278,345,348,350,351,356, 353,354,360,364,380,430
361, 362, 363, 376, 379, 425, 445 Dispersion relation

Contact discontinuity 89, 90 exact 152, 302
Continuity equation 108 numerical 302, 318
Control-volume 237, 241, 253 Displacement operator 171
Convection-diffusion equation 268, Dissipation (viscous) 20

269, 270, 322, 329, 331, 334, 336, Dissipation error (see Diffusion error)
403, 409, 411 numerical (see Numerical dissipation)

Convection equation 267, 270, 272, 289, Dissipation in the sense of Kreiss 324,
303,305,319,321,342,347,351, 325,354,360
352,375,379,380,382,386,392, Dissipative scheme 324, 325, 355
393,394,395,400,405,411,412, Distributed loss model 81-87
424, 429, 430, 433, 435, 442, 443, friction force 82, 83
446, 481 Divergence form 13

Convergence (condition) 162, 166, 275, Domain of dependence 143, 289
281 Douglas and Rachford method 439

of iterative method 457,461-465 Du Fort and Frankel scheme 313,314,
matrix (operator) 462, 478, 485, 487 345
rate 464-465, 468, 480

Coriolis force 16
Courant-Friedrichs-Lewy (CFL) Elliptic equation 133, 135-155,269,

condition 287, 288, 289, 305, 353, 300,301,421,488
393,394,405,433,434,448 Energy (conservation) equation 19, III,

Courant number 272, 288, 308, 314, 268
316,319,326,327,328,360,364, Enthalpy 19, 31-33
430, 448 stagnation (total) enthalpy 19, 32,

Cran4k-Nic¥0Ison method 426, 429, 109, 110
432,440 Entropy 20,21,31-33,108,110, III

Crocco's equation 21, 24, 82, 88 condition 92, 120
Curved duct 72 equation 20, 83, 85, 88

inequality 92
Damping 305,317,323,346,389,444, production 85

449,467,468,470,480,488,489, Equation discretization 161, f04
491 Equation of state 32

Delta form 436, 439 Equivalence Theorem of Lax 281, 401
Diagonal dominance 194, 472 Equivalent differential equation 265,
Diffusion error 303, 316, 317, 344, 346, 277,278,342-366,370

360, 430 Error analysis for hyperbolic problems
Diffusion equation 268,291,303,314, 305-311,353-354

320,330,343,380,382,385,392, for parabolic problems 303-304
393, 395, 405, 429, 437, 440,,448 Error of iterative scheme 462, 463, 465,

Diffusion phenomena 133, 135, 268, 467
269, 406 Error of numerical scheme 283, 284,

Direct method 163,456,463,484 301,412,413,415
Dirichlet boundary condition (see high-frequency 304, 310, 313, 316,

Boundary condition) 319, 325, 326, 354, 430, 449,
Discontinuities 13, 88, 92, 111,311, 467,468,488-492

314,316,317,365 low-frequency 304,316,318,325,
Discrete Fourier transform 296 444, 467, 468, 488-492



511

Euler equations 15, 87-99, 111, 125, Gauss and Seidel point iteration 460,
128,240,298,386,397,423,429, 461,462,464,466,468,469,471,
437, 447, 448, 488 473, 486

Euler explicit method 271, 289, 298, line iteration 474-476
379,388,391-393,395,403,413, Gaussian quadrature 228-231
423, 429, 433, 478, 481 Generating polynomial 425, 426

Euler implicit method 271, 289, 379, Godunov and Ryabenkii condition 409
388,394,429,439 Group velocity 152, 317-319, 327, 409

EVP method 301 (',
Expansion shock 91 Heat conduction equation 268 i

Explicit method (scheme) 162,271, 376, Heat sources 19
423, 431, 432 Helmholtz equation 16, 44

Henn's method 433, 446 \\
Factorization 424, 439, 440 Hermitian elements 205, 210-211
Fick's law 133 schemes 181, 183
Finite difference method 167-200, 319, Horizontal line relaxation 475

382, 383 Hybrid equations 140, 154
Finite difference operators 168, 171, Hyperbolic equation (problem) 133,

172,174,177-180 135-155,267,270,303,305,322,
averaging operator 172 323,345-366,386,387,409,421,
backward difference 168, 172, 448,486

177-180,271,389,394 non-linear 360-366
central difference 168,172,177-180,

331, 336, 343, 374, 378, 388, III-posed problem 153
390,392,395,403,423,429,433 Implicit difference formulas 171,

forward difference 168,172,177-180, 180-186
271,272, 389, 391 Implicit method 162, 163, 376, 423,

for mixed derivatives 191-195 424,437
on non-uniform mesh 191-197 Implicit scheme 271, 279, 280, 412

Finite element method 125, 190,201, Incomplete Choleski factorization 483
319,382,459,484 Incompressible fluid 44,45,106,127

Finite volume method 223, 224, 237, Initial (boundary) value problem
241-252 153-155,283,301,370,371.,386

Five-point formula for Laplace equation Integral formulation 204
187-188,301,457 Internal energy 20

Flux 9, 10, 29, 237-241, 360, 436 Internal flows 120-125
convective 9, 11, 18 Interior scheme 387, 403, 409
diffusive 9, 11, 18 Interpolation functions 203, 205-216

Fourier analysis (decomposition) Inviscid flow 84, 100, 155
284-286,290,320,375,385 Inviscid pressure field 76-77

harmonics 285,290,315,323,344, Irregular mesh 195-197
346 Irrotational flows 108, 109, 120

of iterative scheme 467-469 Isentropic condition 108-109
Fourier's law 18 potential equation 120-130
Fractional-step method 438, 439, 444 shock 110-120
Friction force 83, 84 Isoparametric transformaticJp (mapping)
Fromm's scheme 360 208, 227

Iterative method (scheme) 163;412,
Galerkin method 190, 218, 224 422, 456-500 \
Galerkin and Bubnow method 218
Galerkin and Petrov method 218, 222 Jacobi point iterative method 412,
Gas constant 32 460-461, 464, 466, 467, 469, 472,
Gauss points 228-231 490
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Jacobi point iterative method (cont.) Multistep method 376-379, 424-431
line relaxation 475, 476, 487, 488

Jacobian matrix 139, 150, 436, 485 Navier-Stokes equations 15,29-48,63,
of flux vector 139, 360 135,154,424,428,433,435,488
of isoparametric transformation Neumann boundary condition (see

227-228 Boundary condition)
Newton method 435, 484-486

Kutta-Joukowski condition 109-110, Newtonian fluid 14, 15, 16,31,45
125 Nine-point formula for Laplace

equation 190, 191
Lagrangian elements 205-210, 211-216 Non-conservative form (scheme) 15,
Laminar flow 45, 71, 73 238, 239
Laplace's equation 187-191,219,301, Non-dimensional form of equations

437,471,472,479,486,487,490 133,134 (

Lax equivalence theorem 281 Non-linear error terms 343, 360-366
Lax-Friedrichs scheme 299,306,315, instability 326,327,328,397,424

321,324,333,348,349,352,354, Non-uniform mesh 195-197, 244, 413
357 Non-uniqueness of potential flow

Lax-Wendroff scheme 308-311,314, 120-128
316,317,325,348,354,355,357, of viscous flow 38
360, 364, 435 Normal matrix 297, 321, 401

Leapfrog scheme 311-313,314-319, Normal mode representation 266,
326,336,347,348,357,366,374, 408-415
379,388,390,393,395,413,423 Nozzle 120-125

Levels of approximation 133, 135, 161 Numerical boundary condition 265, 319
dynamical level 5, 26 Numerical dissipation 307, 324, 326,
spatial level 4 329, 346, 347, 358, 360, 364, 365,
steadiness level 4 366,379,389,390,397,431,443,

Linearization 431,435-437 448
Linearized potential flow 127 Numerical domain of dependence 289
Local mode analysis 375 Numerical flux 241, 361, 364

Numerical viscosity 277, 346, 352, 353,
Mach angle 148 358, 363, 364
Mach line 137
Mach number 32,35,44,51,56,67, Odd-even decoupling (oscillations) 189

6?, 81, 95, 97,112-126,137 Order of accuracy 161,167,197,219,
Mappmg 2~6 271, 276-278, 343, 346, 351, 356,
Mass lump!ng 223 360
Mass. matnx 223.. . Ordinary differential equations 421-429
Matnx form (of dlscretlzed equations) Oscillations 311, 406, 429

278, 290 non-linear 326-329, 365
method 265, 370-415 Overrelaxation 465-478 482

McCormack's met~od 433, 434, 437 Gauss-Seidel 471-473
Mesh Reynolds (Peclet) number 334, Jacobi 465-475

403-40~, 410, 411 successive point (SOR) 471,473,487
Method of lines 271 successive line 474
Mixed derivatives 191-195 symmetric 473-475
Modal equation 374, 425, 432
Momentum conservation 111-112
Momentum equation 108, 112 Panel method 128
Monotone scheme 357 Parabolic equation (problem) 133, 154,
Multigrid method 163, 422, 457, 467, 267, 268, 270, 303, 304, 320, 322,

488-500 343-345,421,437
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Parabolized Navier-Stokes equations Rothalpy 21, 24, 85, 100
(PNS) 70-75, 421 Round-off error 284, 411

Peaceman-Rachford method 441 Runge-Kutta method 413, 424, 445-449
Peclet number 268
Perfect gas 31-33, 103 Secondary flows 74
Periodic boundary conditions (see Shallow-water equations 141, 150,291,

Boundary condition) 298
Phase angle 286,316 Shear stress 14,18
Phase error (see Dispersion error) Shock 35, 44, 51, 691 89, 90, 91,

lagging 305, 308, 316, 317, 360, 431 111-120,240,318,326
leading 305, 307, 353, 360 normal shock 112-119

Phase velocity 149, 153, 303, 318, 319 Singularity method 127
Physical boundary condition 386-388 Slip lines 91
Poisson equation 457-459, 466, 488 Small disturbance approximation 126,

for pressure 45 137,147
Potential flow 108-128, 137, 155, 269, Sonic velocity 33, 137

270, 482 Space discretization 161
Potential shocks 111-120 eigenvalues of 371,373,377,488
Prandtl number 19 operator 290, 370-391, 425, 436, 456,
Preconditioning 163, 374, 422, 457, 466

478-484 spectrum of 380-391, 488
Predictor-corrector method 431-435, stability of 373, 374-380

446 Space marching 412
Pressure correction method 73 Spacelike variables 148-152
Principal root 379 Specific heat, ratio of 18, 32, 103
Propagatidh phenomena 134, 386 Spectral analysis of numerical errors
Pseudo-unsteady formulation 162, 163 301-311,422

radius 296, 297, 321, 400, 402, 406,
Quasi-linear differential equations 133, 408, 413, 463, 468, 469, 472, 479

139 Spectrum (of a difference operator)
Quasi-three-dimensional approximation 380-390

(see Levels of approximation) for convection equation 386-396
for diffusion equation 378, 380, 385,

Rankine-Hugoniot relations 89-93, 386
111-120, 123, 240 of iterative method 465-467

Relaxation method 457, 488 Speed of sound (see Sonic velocity)
equivalent differential equation Spline methods 183

486-488 Spurious solution (root) 314, 379
parameter 471,479,482 Stability (condition) 162, 166,265,275,
red-black 476, 492 277,278-280,287,342,343,345,
smoothing properties 490-492 355,356,357,375,376,377,
zebra 477,478,492 391-396,400,402,403,423,425,

Residual 216, 278, 461, 462, 486 428,429,432,446
Reynolds-averaged Navier-Stokes for convection-diffusion equation

equations 48, 49-62 331-335, 403-408
Reynolds number 45,75,87, 134,268, for hyperbolic problems 305-313,

410 345-356
Reynolds stress 50 of iterative method 478
Richardson's method 479, 482 from matrix method 370-415,
Rotary stagnation pressure 106, 109 406-408
Rotating frame of reference 16-18, 82, for multi-dimensional problems

100 319-322
Rotational flow 24, 100-107 neutral 313,326
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Stability (condition) (cont.) Transonic flow 110-126, 137, 240, 270,
for non-linear problems 322-329 482
for parabolic problems 303, 320, Transport equation 268, 270

343-345 Trapezoidal method 426, 428, 430
from Von Neumann method 295-337, Tridiagonal system 182, 183, 271,

346,351,352,355,356,359, 383-385,430,431,437,441,460
370,375,385,392,393 eigenvalues of 383-385

Stagnation enthalpy (see Enthalpy) Truncation error 174, 175, 184-186,
Stagnation pressure 33,103,113 197,240,265,276-278,342,343,
Stagnation temperature 32 347,351,352,361,362,390,464
Steady-state (stationary) formulation 70, Turbulence models 51

84, 373, 409-412, 421, 424, 444, Turbulent flow 47, 48, 50-62, 73, 74
447, 479 Two-level schemes (general form)

inviscid flows 100-107 329-330, 347-356, 375,400,
potential flow 109 426-427,431

Stiffness matrix 218, 484
Stokes equation 134 Unconditional instability 287 393 405Streamline 108,123 423 443 ' , ,

Strongl~ implicit procedure (SIP) 483 stabili~y 289, 314, 345, 413, 423, 428,
Subsonic flow 120, 137, 155, 270, 386 443 482
Successive overrelaxation (SOR) (see Unstable s~heme 272

Overrelaxation) Upwind scheme 272 307 314 324 347Supercrit~cal airfoil 119 351,354,358,386,389,392,395, '

Supersonic flow 137, 270, 421 434
Sutherland's formula 31

Variational principle (formulation) 204,
Taylor expansion 167-171, 174, 183, 218

196 276 308 332 342 347 348 Vertical line relaxation 476, 488360' 361' 379' 425' 426' 432' , Viscid-inviscid interaction 78
Test fu~ctio~s 217 " Viscosity, coefficient of 14, 15,31

Thermal conductivity, coefficient of 19, Viscous-inviscid interaction 27,87
31 Von Neumann method 265,283-337,

Thermal diffusivity 18 346,351,355,356,359,370,375,
Thin-shear layer approximation 27, 385, 392, 393, 401, 402, 403-406,

63-70 76 154 409,413,422,434,441,468
Thomas al~ori~hm 457, 474 Von Neumann polynomial 335-336
Three-level schemes 311-314 378 379 Vortex sheet 89, 90426-428 430 431 ' , , Vortex singularity 109
Through-flo~ 84 ' Vorticity equation 15, 44, 93

Time-dependent (equation) approach vector 15, 18, 24, 88, 100, 102, 103

162,270,373,412,421,423,456, .
464 WarmIng and Beam scheme (see Beam

Time-integration method 370, 374, 413, and Warming scheme)
456

stability of 376-380, 391-400, 413, Wave equation 270, 291, 300, 314, 388
423 Wave-front 135,136,140,146

Time-like variable 148-152,421 Wave-length 285, 286
Time-marching method 162 Wave-like solutions 135, 136, 149-151,
Total energy 18 153
Total enthalpy (see Enthalpy) Wave-number 149-151, 285, 286-337
Transient solution 373,374,376,377, vector 319

424, 466 Wave packet 315-319, 360
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Wave (phase) speed 149, 299, 305 Well-posed problem (in the sense of
Weak formulation 204, 217, 221 Hadamard) 152, 343, 372, 377,
Weak instability 444 382, 394, 486
Weak solution 241
Weighted residual method 204, 216-226 Zone of dependence 143
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